IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12473-d929973.html
   My bibliography  Save this article

Short-Term Associations between Size-Fractioned Particles and Cardiopulmonary Function in COPD Patients: A Panel Study in Shanghai, China, during 2014–2021

Author

Listed:
  • Lu Zhou

    (Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
    These authors contributed equally to this work.)

  • Yingmin Tao

    (Division of General Practice, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
    Center of Community-Based Health Research, Fudan University, Shanghai 200240, China
    These authors contributed equally to this work.)

  • Xiaozhen Su

    (Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
    These authors contributed equally to this work.)

  • Xiyin Chen

    (Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA)

  • Liang Li

    (Division of General Practice, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
    Center of Community-Based Health Research, Fudan University, Shanghai 200240, China)

  • Qingyan Fu

    (Shanghai Environmental Monitoring Center, Shanghai 200235, China)

  • Juan Xie

    (Division of General Practice, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
    Center of Community-Based Health Research, Fudan University, Shanghai 200240, China)

  • Renjie Chen

    (Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China)

Abstract

It remains unknown which size fractions dominate the adverse cardiopulmonary effects of particulate matter (PM). Therefore, this study aimed to explore the differential associations between size-fractioned particle number concentrations (PNCs) and cardiopulmonary function measures, including the forced expiratory volume in one second (FEV 1 ), the forced vital capacity (FVC), and the left ventricular ejection fraction (LVEF). We conducted a panel study among 211 patients with chronic obstructive pulmonary disease (COPD) in Shanghai, China, between January 2014 and December 2021. We applied linear mixed-effect models to determine the associations between cardiopulmonary function measures and PNCs ranging from 0.01 to 10 μm in diameter. Generally, only particles <1 μm showed significant associations, i.e., ultrafine particles (UFPs, <0.1 μm) for FVC and particles ranging from 0.1 to 1 µm for FEV 1 and LVEF. An interquartile range (IQR) increment in UFP was associated with decreases of 78.4 mL in FVC. PNC 0.1–0.3 and PNC 0.3–1 corresponded to the strongest effects on FEV 1 (119.5 mL) and LVEF (1.5%) per IQR increment. Particles <1 µm might dominate the cardiopulmonary toxicity of PM, but UFPs might not always have the strongest effect. Tailored regulations towards particles <1 µm should be intensified to reduce PM pollution and protect vulnerable populations.

Suggested Citation

  • Lu Zhou & Yingmin Tao & Xiaozhen Su & Xiyin Chen & Liang Li & Qingyan Fu & Juan Xie & Renjie Chen, 2022. "Short-Term Associations between Size-Fractioned Particles and Cardiopulmonary Function in COPD Patients: A Panel Study in Shanghai, China, during 2014–2021," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12473-:d:929973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12473/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12473/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oyewale Mayowa Morakinyo & Matlou Ingrid Mokgobu & Murembiwa Stanley Mukhola & Raymond Paul Hunter, 2016. "Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter," IJERPH, MDPI, vol. 13(6), pages 1-22, June.
    2. Simone Ohlwein & Ron Kappeler & Meltem Kutlar Joss & Nino Künzli & Barbara Hoffmann, 2019. "Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 64(4), pages 547-559, May.
    3. Mario Coccia, 2021. "Evolution and structure of research fields driven by crises and environmental threats: the COVID-19 research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9405-9429, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roman Vasilevich & Mariya Vasilevich & Evgeny Lodygin & Evgeny Abakumov, 2023. "Geochemical Characteristics of the Vertical Distribution of Heavy Metals in the Hummocky Peatlands of the Cryolithozone," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    2. Denis Vinnikov & Zhanna Romanova & Aizhan Raushanova & Arailym Beisbekova & Ermanno Vitale & Gulnar Bimuratova & Venerando Rapisarda, 2023. "Exposure to Respirable Particulate Matter and Its Association with Respiratory Outcomes in Beauty Salon Personnel," IJERPH, MDPI, vol. 20(3), pages 1-10, January.
    3. Greta Gerlach & Markus Braun & Janis Dröge & David A. Groneberg, 2022. "Do Budget Cigarettes Emit More Particles? An Aerosol Spectrometric Comparison of Particulate Matter Concentrations between Private-Label Cigarettes and More Expensive Brand-Name Cigarettes," IJERPH, MDPI, vol. 19(10), pages 1-11, May.
    4. Dusan Jandacka & Matej Brna & Daniela Durcanska & Matus Kovac, 2023. "Characterization of Road Dust, PM x and Aerosol in a Shopping–Recreational Urban Area: Physicochemical Properties, Concentration, Distribution and Sources Estimation," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    5. Katherine L Thayer & Kevin Lane & Matthew C Simon & Doug Brugge & Christina H Fuller, 2022. "An exploratory analysis of sociodemographic characteristics with ultrafine particle concentrations in Boston, MA," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-12, March.
    6. Monika A. Zielinska & Jadwiga Hamulka, 2019. "Protective Effect of Breastfeeding on the Adverse Health Effects Induced by Air Pollution: Current Evidence and Possible Mechanisms," IJERPH, MDPI, vol. 16(21), pages 1-29, October.
    7. Török, Ádám & Konka, Boglárka & Nagy, Andrea Magda, 2023. "A koronavírus-járvány a közgazdasági szakirodalomban. Egy új határterület tudománymetriai elemzése [The coronavirus pandemic in the economics literature. The scientometric analysis of a new discipl," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 284-304.
    8. Barouch Giechaskiel, 2018. "Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    9. Mushtaq Ahmad & Jing Chen & Qing Yu & Muhammad Tariq Khan & Syed Weqas Ali & Asim Nawab & Worradorn Phairuang & Sirima Panyametheekul, 2023. "Characteristics and Risk Assessment of Environmentally Persistent Free Radicals (EPFRs) of PM 2.5 in Lahore, Pakistan," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    10. Enrico Pisoni & Philippe Thunis & Alexander De Meij & Bertrand Bessagnet, 2022. "Assessing the Impact of Local Policies on PM2.5 Concentration Levels: Application to 10 European Cities," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    11. Vesna Viher Hrženjak & Andreja Kukec & Ivan Eržen & Dalibor Stanimirović, 2020. "Effects of Ultrafine Particles in Ambient Air on Primary Health Care Consultations for Diabetes in Children and Elderly Population in Ljubljana, Slovenia: A 5-Year Time-Trend Study," IJERPH, MDPI, vol. 17(14), pages 1-19, July.
    12. Gyeyoung Choi & Yujeong Kim & Gyeongseon Shin & SeungJin Bae, 2022. "Projecting Lifetime Health Outcomes and Costs Associated with the Ambient Fine Particulate Matter Exposure among Adult Women in Korea," IJERPH, MDPI, vol. 19(5), pages 1-14, February.
    13. Ondrej Machaczka & Vitezslav Jirik & Viera Brezinova & Adela Vrtkova & Hana Miturova & Petra Riedlova & Andrea Dalecka & Barbara Hermanova & Hana Slachtova & Grzegorz Siemiatkowski & Leszek Osrodka & , 2021. "Evaluation of Fine and Ultrafine Particles Proportion in Airborne Dust in an Industrial Area," IJERPH, MDPI, vol. 18(17), pages 1-14, August.
    14. Markus Braun & Rawya Al-Qaysi & Doris Klingelhöfer & Ruth Müller & David A. Groneberg, 2020. "High Particulate Matter Burden of Cigarettes from the United Arab Emirates and Germany: Are There Country-Specific Differences?," IJERPH, MDPI, vol. 17(7), pages 1-12, April.
    15. Fabio Boccuni & Riccardo Ferrante & Francesca Tombolini & Sergio Iavicoli & Armando Pelliccioni, 2021. "Relationship between Indoor High Frequency Size Distribution of Ultrafine Particles and Their Metrics in a University Site," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    16. Egide Kalisa & Stephen Archer & Edward Nagato & Elias Bizuru & Kevin Lee & Ning Tang & Stephen Pointing & Kazuichi Hayakawa & Donnabella Lacap-Bugler, 2019. "Chemical and Biological Components of Urban Aerosols in Africa: Current Status and Knowledge Gaps," IJERPH, MDPI, vol. 16(6), pages 1-21, March.
    17. Gabriela Martins Costa Gomes & Wilfried Karmaus & Vanessa E. Murphy & Peter G. Gibson & Elizabeth Percival & Philip M. Hansbro & Malcolm R. Starkey & Joerg Mattes & Adam M. Collison, 2021. "Environmental Air Pollutants Inhaled during Pregnancy Are Associated with Altered Cord Blood Immune Cell Profiles," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    18. Coccia, Mario, 2022. "Probability of discoveries between research fields to explain scientific and technological change," Technology in Society, Elsevier, vol. 68(C).
    19. Yang Ni & Wang Song & Yu Bai & Tao Liu & Guoxing Li & Ying Bian & Qiang Zeng, 2021. "Years of Life Lost (YLL) Due to Short-Term Exposure to Ambient Air Pollution in China: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 18(21), pages 1-17, October.
    20. Ruifeng Hu & Weiqiao Xu & Yalin Yang & Guangxian Ni, 2024. "A Combined Scientometric and Meta-analysis Exploration of Eco-innovation: Evolution and Determinants," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 3174-3201, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12473-:d:929973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.