IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1973-d346393.html
   My bibliography  Save this article

Assessment of Thermal Comfort in the Intelligent Buildings in View of Providing High Quality Indoor Environment

Author

Listed:
  • Grzegorz Majewski

    (District Court, Warszawska 1, 26-610 Radom, Poland)

  • Łukasz J. Orman

    (Faculty of Environmental, Geomatic and Energy Engineering Kielce University of Technology, 25-314 Kielce, Poland)

  • Marek Telejko

    (Faculty of Civil Engineering and Architecture, Kielce University of Technology, 25-314 Kielce, Poland)

  • Norbert Radek

    (Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland)

  • Jacek Pietraszek

    (Faculty of Mechanical Engineering, Cracow University of Technology, 31-864 Cracow, Poland)

  • Agata Dudek

    (Institute of Materials Engineering, Czestochowa University of Technology, 42-200 Częstochowa, Poland)

Abstract

The paper analyses the indoor environment in two modern intelligent buildings located in Poland. Measurements of air and globe temperatures, relative humidity and carbon dioxide concentration in 117 rooms carried out in the space of 1.5 years were presented. Thermal comfort of the occupants has been investigated using a questionnaire survey. Based on 1369 questionnaires, thermal sensation, acceptability and preference votes were analysed in view of their interdependency as well as their dependency on operative temperature, which proved to be very strong. It has been found that the respondents did not completely rate thermal comfort and indoor environment quality as very high, although the overwhelming sensations were positive. Apart from the operation of heating, ventilation and air conditioning (HVAC) systems, this might have also been the cause of individual human factors, such as body mass index, as tested in the study, or the finding that people were generally in favour of a warmer environment. Moreover, thermal environment proved to be the most important element for ensuring the well-being of the occupants.

Suggested Citation

  • Grzegorz Majewski & Łukasz J. Orman & Marek Telejko & Norbert Radek & Jacek Pietraszek & Agata Dudek, 2020. "Assessment of Thermal Comfort in the Intelligent Buildings in View of Providing High Quality Indoor Environment," Energies, MDPI, vol. 13(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1973-:d:346393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Robledo-Fava & Mónica C. Hernández-Luna & Pedro Fernández-de-Córdoba & Humberto Michinel & Sonia Zaragoza & A Castillo-Guzman & Romeo Selvas-Aguilar, 2019. "Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings," Energies, MDPI, vol. 12(8), pages 1-23, April.
    2. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    3. Yaser Imad Alamin & María Del Mar Castilla & José Domingo Álvarez & Antonio Ruano, 2017. "An Economic Model-Based Predictive Control to Manage the Users’ Thermal Comfort in a Building," Energies, MDPI, vol. 10(3), pages 1-18, March.
    4. Sung Hyup Hong & Jong Man Lee & Jin Woo Moon & Kwang Ho Lee, 2018. "Thermal Comfort, Energy and Cost Impacts of PMV Control Considering Individual Metabolic Rate Variations in Residential Building," Energies, MDPI, vol. 11(7), pages 1-21, July.
    5. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    6. Diana Enescu, 2019. "Models and Indicators to Assess Thermal Sensation Under Steady-State and Transient Conditions," Energies, MDPI, vol. 12(5), pages 1-43, March.
    7. Guedes, Manuel Correia & Matias, Luís & Santos, Carlos Pina, 2009. "Thermal comfort criteria and building design: Field work in Portugal," Renewable Energy, Elsevier, vol. 34(11), pages 2357-2361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jongyeon Lim & Wonjun Choi, 2022. "Influence of a Better Prediction of Thermal Satisfaction for the Implementation of an HVAC-Based Demand Response Strategy," Energies, MDPI, vol. 15(9), pages 1-11, April.
    2. Imre Csáky, 2021. "Analysis of Daily Energy Demand for Cooling in Buildings with Different Comfort Categories—Case Study," Energies, MDPI, vol. 14(15), pages 1-17, August.
    3. Elnour, Mariam & Fadli, Fodil & Himeur, Yassine & Petri, Ioan & Rezgui, Yacine & Meskin, Nader & Ahmad, Ahmad M., 2022. "Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    5. Przemysław Markiewicz-Zahorski & Joanna Rucińska & Małgorzata Fedorczak-Cisak & Michał Zielina, 2021. "Building Energy Performance Analysis after Changing Its Form of Use from an Office to a Residential Building," Energies, MDPI, vol. 14(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    2. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    3. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    4. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    5. Ali Youssef & Nicolás Caballero & Jean Marie Aerts, 2019. "Dynamic Model-Based Monitoring of Human Thermal Comfort for Real-Time and Adaptive Control Applications," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 19(4), pages 14526-14532, July.
    6. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    7. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    8. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    9. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Baloglu, Ulas Baran & Demir, Yakup, 2018. "Lightweight privacy-preserving data aggregation scheme for smart grid metering infrastructure protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 16-24.
    11. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    12. Sadeghianpourhamami, N. & Demeester, T. & Benoit, D.F. & Strobbe, M. & Develder, C., 2016. "Modeling and analysis of residential flexibility: Timing of white good usage," Applied Energy, Elsevier, vol. 179(C), pages 790-805.
    13. Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
    14. Ponce, Pedro & Polasko, Kenneth & Molina, Arturo, 2016. "End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 587-598.
    15. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.
    16. Anthony McLean & Harriet Bulkeley & Mike Crang, 2016. "Negotiating the urban smart grid: Socio-technical experimentation in the city of Austin," Urban Studies, Urban Studies Journal Limited, vol. 53(15), pages 3246-3263, November.
    17. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    18. Asaad, Mohammad & Ahmad, Furkan & Alam, Mohammad Saad & Sarfraz, Mohammad, 2021. "Smart grid and Indian experience: A review," Resources Policy, Elsevier, vol. 74(C).
    19. Inna Čábelková & Wadim Strielkowski & Irina Firsova & Marina Korovushkina, 2020. "Public Acceptance of Renewable Energy Sources: a Case Study from the Czech Republic," Energies, MDPI, vol. 13(7), pages 1-15, April.
    20. Wang, Zhaohua & Sun, Yefei & Wang, Bo, 2020. "Policy cognition is more effective than step tariff in promoting electricity saving behaviour of residents," Energy Policy, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1973-:d:346393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.