IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v94y2016icp62-75.html
   My bibliography  Save this article

Estimating the influence of common disruptions on urban rail transit networks

Author

Listed:
  • Sun, Huijun
  • Wu, Jianjun
  • Wu, Lijuan
  • Yan, Xiaoyong
  • Gao, Ziyou

Abstract

With the continuous expansion of urban rapid transit networks, disruptive incidents—such as station closures, train delays, and mechanical problems—have become more common, causing such problems as threats to passenger safety, delays in service, and so on. More importantly, these disruptions often have ripple effects that spread to other stations and lines. In order to provide better management and plan for emergencies, it has become important to identify such disruptions and evaluate their influence on travel times and delays. This paper proposes a novel approach to achieve these goals. It employs the tap-in and tap-out data on the distribution of passengers from smart cards collected by automated fare collection (AFC) facilities as well as past disruptions within networks. Three characteristic types of abnormal passenger flow are divided and analyzed, comprising (1) “missed” passengers who have left the system, (2) passengers who took detours, and (3) passengers who were delayed but continued their journeys. In addition, the suggested computing method, serving to estimate total delay times, was used to manage these disruptions. Finally, a real-world case study based on the Beijing metro network with the real tap-in and tap-out passenger data is presented.

Suggested Citation

  • Sun, Huijun & Wu, Jianjun & Wu, Lijuan & Yan, Xiaoyong & Gao, Ziyou, 2016. "Estimating the influence of common disruptions on urban rail transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 62-75.
  • Handle: RePEc:eee:transa:v:94:y:2016:i:c:p:62-75
    DOI: 10.1016/j.tra.2016.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416303913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
    2. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    3. Jin, Jian Gang & Tang, Loon Ching & Sun, Lijun & Lee, Der-Horng, 2014. "Enhancing metro network resilience via localized integration with bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 17-30.
    4. Sybil Derrible & Christopher Kennedy, 2010. "Characterizing metro networks: state, form, and structure," Transportation, Springer, vol. 37(2), pages 275-297, March.
    5. Cadarso, Luis & Marín, Ángel & Maróti, Gábor, 2013. "Recovery of disruptions in rapid transit networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 15-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Jinpeng & Wu, Jianjun & Qu, Yunchao & Yin, Haodong & Qu, Xiaobo & Gao, Ziyou, 2019. "Robust bus bridging service design under rail transit system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 97-116.
    2. Nan Zhang & Daniel J. Graham & Daniel Hörcher & Prateek Bansal, 2021. "A causal inference approach to measure the vulnerability of urban metro systems," Transportation, Springer, vol. 48(6), pages 3269-3300, December.
    3. Bowen Hou & Yang Cao & Dongye Lv & Shuzhi Zhao, 2020. "Transit-Based Evacuation for Urban Rail Transit Line Emergency," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    4. Li, Binbin & Yao, Enjian & Yamamoto, Toshiyuki & Tang, Ying & Liu, Shasha, 2020. "Exploring behavioral heterogeneities of metro passenger’s travel plan choice under unplanned service disruption with uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 294-306.
    5. Jianhua Zhang & Ziqi Wang & Shuliang Wang & Shengyang Luan & Wenchao Shao, 2020. "Vulnerability Assessments of Urban Rail Transit Networks Based on Redundant Recovery," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    6. Chengli Cong & Xuan Li & Shiwei Yang & Quan Zhang & Lili Lu & Yang Shi, 2022. "Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach," IJERPH, MDPI, vol. 19(15), pages 1-25, July.
    7. Chen, Yao & An, Kun, 2021. "Integrated optimization of bus bridging routes and timetables for rail disruptions," European Journal of Operational Research, Elsevier, vol. 295(2), pages 484-498.
    8. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2021. "Impacts of real-time information levels in public transport: A large-scale case study using an adaptive passenger path choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 155-182.
    9. Wu, Jianjun & Qu, Yunchao & Sun, Huijun & Yin, Haodong & Yan, Xiaoyong & Zhao, Jiandong, 2019. "Data-driven model for passenger route choice in urban metro network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 787-798.
    10. Zhang, Li & Chen, Tingting & Liu, Zhongshan & Yu, Bin & Wang, Yunpeng, 2024. "Analysis of multi-modal public transportation system performance under metro disruptions: A dynamic resilience assessment framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    11. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    12. Huang, Wencheng & Shuai, Bin & Sun, Yan & Wang, Yang & Antwi, Eric, 2018. "Using entropy-TOPSIS method to evaluate urban rail transit system operation performance: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 292-303.
    13. Elisa Borowski & Jason Soria & Joseph Schofer & Amanda Stathopoulos, 2020. "Disparities in ridesourcing demand for mobility resilience: A multilevel analysis of neighborhood effects in Chicago, Illinois," Papers 2010.15889, arXiv.org.
    14. Mo, Baichuan & Koutsopoulos, Haris N. & Zhao, Jinhua, 2022. "Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    15. Taoyuan Yang & Peng Zhao & Xiangming Yao, 2020. "A Method to Estimate URT Passenger Spatial-Temporal Trajectory with Smart Card Data and Train Schedules," Sustainability, MDPI, vol. 12(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    2. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    3. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.
    4. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    5. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    6. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    7. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    8. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    9. Kermanshah, A. & Derrible, S., 2016. "A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 39-49.
    10. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    12. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    13. Daniela Leite & Caterina De Bacco, 2024. "Similarity and economy of scale in urban transportation networks and optimal transport-based infrastructures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Hong, Liu & Yan, Yongze & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2017. "Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 58-72.
    15. Hong, Liu & Ouyang, Min & Xu, Min & Hu, Peipei, 2020. "Time-varied accessibility and vulnerability analysis of integrated metro and high-speed rail systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Cats, Oded & Krishnakumari, Panchamy, 2020. "Metropolitan rail network robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    17. Ermagun, Alireza & Tajik, Nazanin & Janatabadi, Fatemeh & Mahmassani, Hani, 2023. "Uncertainty in vulnerability of metro transit networks: A global perspective," Journal of Transport Geography, Elsevier, vol. 113(C).
    18. Xiao Feng & Shiwei He & Xuchao Chen & Guangye Li, 2021. "Mitigating the vulnerability of an air-high-speed railway transportation network: From the perspective of predisruption response," Journal of Risk and Reliability, , vol. 235(3), pages 474-490, June.
    19. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    20. Lorenzo Mussone & Roberto Notari, 2021. "A comparative analysis of underground and bus transit networks through graph theory," Environment and Planning B, , vol. 48(3), pages 574-591, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:94:y:2016:i:c:p:62-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.