IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v159y2022ics1366554522000266.html
   My bibliography  Save this article

Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework

Author

Listed:
  • Mo, Baichuan
  • Koutsopoulos, Haris N.
  • Zhao, Jinhua

Abstract

This study proposes a probabilistic framework to infer passengers’ responses to unplanned urban rail service disruptions using smart card data in tap-in-only public transit systems. We first identify 19 possible response behaviors that passengers may have based on their decision-making times and locations (i.e, the stage of their trips when an incident happened), including transferring to a bus line, canceling trips, waiting, delaying departure time, etc. A probabilistic model is proposed to estimate the mean and variance of the number of passengers in each of the 19 behavior groups using passengers’ smart card transactions. The 19 behavioral responses can be categorized from two aspects. From the behavioral aspect, they can be grouped into 5 aggregated response behaviors including using bus, using rail (changing or not changing route), not using public transit, and not being affected. The inference of the 19 behaviors can be classified into four cases based on the information used (historical trips vs. subsequent trips) and the context of the observed transactions (direct incident-related vs. indirect incident-related). The public transit system (bus and urban rail) of the Chicago Transit Authority (CTA) is used as a case study based on a real-world rail disruption incident. The model is applied with both synthetic data and real-world data. Results with synthetic data show that the proposed approach can estimate passengers’ behavior well. The mean absolute percentage error (MAPE) for the estimated expected number of passengers in each behavior group is 20.5%, which outperforms the rule-based benchmark method (60.3%). The estimation results with real-world data are consistent with the incident’s context. An indirect model validation method using demand change information and incident log data demonstrates the reasonableness of the results.

Suggested Citation

  • Mo, Baichuan & Koutsopoulos, Haris N. & Zhao, Jinhua, 2022. "Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:transe:v:159:y:2022:i:c:s1366554522000266
    DOI: 10.1016/j.tre.2022.102628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522000266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    2. Zhang, X. & Miller-Hooks, E. & Denny, K., 2015. "Assessing the role of network topology in transportation network resilience," Journal of Transport Geography, Elsevier, vol. 46(C), pages 35-45.
    3. Lin, Teddy & Shalaby, Amer & Miller, Eric, 2016. "Transit User Behaviour in Response to Service Disruption: State of Knowledge," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319263, Transportation Research Forum.
    4. Nielsen, Lars Kjær & Kroon, Leo & Maróti, Gábor, 2012. "A rolling horizon approach for disruption management of railway rolling stock," European Journal of Operational Research, Elsevier, vol. 220(2), pages 496-509.
    5. Zhu, Yiwen & Koutsopoulos, Haris N. & Wilson, Nigel H.M., 2017. "A probabilistic Passenger-to-Train Assignment Model based on automated data," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 522-542.
    6. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    7. López, Fernando A. & Páez, Antonio & Carrasco, Juan A. & Ruminot, Natalia A., 2017. "Vulnerability of nodes under controlled network topology and flow autocorrelation conditions," Journal of Transport Geography, Elsevier, vol. 59(C), pages 77-87.
    8. Jian Gang Jin & Kwong Meng Teo & Amedeo R. Odoni, 2016. "Optimizing Bus Bridging Services in Response to Disruptions of Urban Transit Rail Networks," Transportation Science, INFORMS, vol. 50(3), pages 790-804, August.
    9. Cox, Andrew & Prager, Fynnwin & Rose, Adam, 2011. "Transportation security and the role of resilience: A foundation for operational metrics," Transport Policy, Elsevier, vol. 18(2), pages 307-317, March.
    10. Lucas P. Veelenturf & Martin P. Kidd & Valentina Cacchiani & Leo G. Kroon & Paolo Toth, 2016. "A Railway Timetable Rescheduling Approach for Handling Large-Scale Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 841-862, August.
    11. Sun, Huijun & Wu, Jianjun & Wu, Lijuan & Yan, Xiaoyong & Gao, Ziyou, 2016. "Estimating the influence of common disruptions on urban rail transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 62-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengli Cong & Xuan Li & Shiwei Yang & Quan Zhang & Lili Lu & Yang Shi, 2022. "Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach," IJERPH, MDPI, vol. 19(15), pages 1-25, July.
    2. Yu, Liping & Liu, Huiran & Fang, Zhiming & Ye, Rui & Huang, Zhongyi & You, Yayun, 2023. "A new approach on passenger flow assignment with multi-connected agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    3. Huang, Di & Yang, Yuwei & Peng, Xinyi & Huang, Jiangyan & Mo, Pengli & Liu, Zhiyuan & Wang, Shuaian, 2024. "Modelling the pedestrian’s willingness to walk on the subway platform: A novel approach to analyze in-vehicle crowd congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    4. Zhan, Shuguang & Xie, Jiemin & Wong, S.C. & Zhu, Yongqiu & Corman, Francesco, 2024. "Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    5. Beata Chmiel & Barbara Pawlowska & Agnieszka Szmelter-Jarosz, 2023. "Mobility-as-a-Service as a Catalyst for Urban Transport Integration in Conditions of Uncertainty," Energies, MDPI, vol. 16(4), pages 1-24, February.
    6. Lu, Qing-Chang & Li, Jing & Xu, Peng-Cheng & Zhang, Lei & Cui, Xin, 2024. "Modeling cascading failures of urban rail transit network based on passenger spatiotemporal heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Arpit Shrivastava & Nishtha Rawat & Amit Agarwal, 2024. "Deep-learning-based model for prediction of crowding in a public transit system," Public Transport, Springer, vol. 16(2), pages 449-484, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Junqing & Xu, Lei & Luo, Chunling & Ng, Tsan Sheng Adam, 2021. "Multi-disruption resilience assessment of rail transit systems with optimized commuter flows," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    3. Lu, Qing-Chang, 2018. "Modeling network resilience of rail transit under operational incidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 227-237.
    4. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    5. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    6. Qing-Chang Lu & Shan Lin, 2019. "Vulnerability Analysis of Urban Rail Transit Network within Multi-Modal Public Transport Networks," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    7. Mo, Baichuan & Koutsopoulos, Haris N. & Shen, Zuo-Jun Max & Zhao, Jinhua, 2023. "Robust path recommendations during public transit disruptions under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 82-107.
    8. Jiangang Shi & Shiping Wen & Xianbo Zhao & Guangdong Wu, 2019. "Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    9. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    10. Zhiru Wang & Wubin Ma & Albert Chan, 2020. "Exploring the Relationships between the Topological Characteristics of Subway Networks and Service Disruption Impact," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    11. Chan, Ho-Yin & Chen, Anthony & Li, Guoyuan & Xu, Xiangdong & Lam, William, 2021. "Evaluating the value of new metro lines using route diversity measures: The case of Hong Kong's Mass Transit Railway system," Journal of Transport Geography, Elsevier, vol. 91(C).
    12. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    13. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    14. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    15. Alessandra Cornaro & Daniele Grechi, 2023. "Evaluation of Railway Systems: A Network Approach," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    16. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    18. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    19. Zhan, Shuguang & Wong, S.C. & Shang, Pan & Peng, Qiyuan & Xie, Jiemin & Lo, S.M., 2021. "Integrated railway timetable rescheduling and dynamic passenger routing during a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 86-123.
    20. Tsekeris, Theodore & Souliotou, Anastasia-Zoi, 2014. "Graph-theoretic evaluation support tool for fixed-route transport development in metropolitan areas," Transport Policy, Elsevier, vol. 32(C), pages 88-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:159:y:2022:i:c:s1366554522000266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.