Author
Listed:
- Lu, Bo
- Sun, Yue
- Wang, Huipo
- Wang, Jian-Jun
- Shuai Liu, Samuel
- Cheng, T.C.E.
Abstract
Liner shipping networks play a vital role in global and regional trade. However, they are susceptible to damage from unexpected interruptions, which can trigger dynamic cascading failures and undermine the system’s resilience. To address this challenge, we propose a novel cascading failure model for liner shipping networks that considers the characteristics of the network structure and port functions. First, we design two load redistribution methods that rely on network topology and employ a cooperative mechanism for coordination. This cooperative mechanism aims to balance the benefits for carriers and shippers by effectively controlling losses. Subsequently, we develop three metrics—network congestion rate, failure rate, and shipper loss—to assess the resilience of the network during cascading failures. To verify the impact of the cooperative mechanism, we apply the proposed methods to the China-Europe liner shipping network. Through simulations involving various port failures and resistance levels, we analyze the effectiveness of the cooperative mechanism. The results demonstrate that redistributing the load to downstream ports within the network effectively mitigates deep cascading failures. Additionally, the implementation of a port cooperative mechanism enhances resilience in the face of uncertainties by safeguarding crucial ports within the network and significantly reducing shipper losses. When port resistance is low, the cooperative mechanism reduces shipper losses by nearly half and lowers the average congestion rate. Although port reserve capacity can resist cascading failures, it falls short in the face of severe disruptions. In such cases, the cooperative mechanism compensates for capacity shortages, enhancing port resilience at a low cost. This study contributes to combating and minimizing cascading congestion in liner shipping networks, offering valuable insights for risk prevention and management strategies for ports and shipping companies. It also has implications for yield management and policy decisions from a network perspective.
Suggested Citation
Lu, Bo & Sun, Yue & Wang, Huipo & Wang, Jian-Jun & Shuai Liu, Samuel & Cheng, T.C.E., 2024.
"Dynamic resilience analysis of the liner shipping network: From structure to cooperative mechanism,"
Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
Handle:
RePEc:eee:transe:v:191:y:2024:i:c:s1366554524003466
DOI: 10.1016/j.tre.2024.103755
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:191:y:2024:i:c:s1366554524003466. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.