IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i14p8387-d858953.html
   My bibliography  Save this article

Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China

Author

Listed:
  • Lili Guo

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

  • Yuting Song

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

  • Mengqian Tang

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

  • Jinyang Tang

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

  • Bright Senyo Dogbe

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

  • Mengying Su

    (College of Economics, Guangxi Minzu University, Nanning 530006, China)

  • Houjian Li

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

Abstract

Concern for environmental issues is a crucial component in achieving the goal of sustainable development of humankind. Different countries face various challenges and difficulties in this process, which require unique solutions. This study investigated the relationship between land transfer, fertilizer usage, and PM 2.5 pollution in rural China from 2000 to 2019, considering their essential roles in agricultural development and overall national welfare. A cross section dependence test, unit root test, and cointegration test, among other methods, were used to test the panel data. A Granger causality test was used to determine the causal relationship between variables, and an empirical analysis of the impulse response and variance decomposition was carried out. The results show that the use of chemical fertilizers had a significant positive impact on PM 2.5 pollution, but the impact of land transfer on PM 2.5 pollution was negative. In addition, land transfer can reduce the use of chemical fertilizers through economies of scale, thus reducing air pollution. More specifically, for every 1% increase in fertilizer usage, PM 2.5 increased by 0.17%, and for every 1% increase in land transfer rate, PM 2.5 decreased by about 0.07%. The study on the causal relationship between land transfer, fertilizer usage, and PM 2.5 pollution in this paper is helpful for exploring environmental change—they are supplements and innovations which are based on previous studies and provide policy-makers with a basis and inspiration for decision-making.

Suggested Citation

  • Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:14:p:8387-:d:858953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/14/8387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/14/8387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junqian Wu & Xin Wen & Xiulin Qi & Shile Fang & Chenxi Xu, 2021. "More Land, Less Pollution? How Land Transfer Affects Fertilizer Application," IJERPH, MDPI, vol. 18(21), pages 1-13, October.
    2. Meishan Jiang & Krishna P. Paudel & Yunsheng Mi, 2018. "Factors affecting agricultural land transfer-in in China: a semiparametric analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 25(21), pages 1547-1551, December.
    3. Su, Baozhong & Li, Yuheng & Li, Lequn & Wang, Yue, 2018. "How does nonfarm employment stability influence farmers' farmland transfer decisions? Implications for China’s land use policy," Land Use Policy, Elsevier, vol. 74(C), pages 66-72.
    4. Khan, Irfan & Hou, Fujun & Le, Hoang Phong & Ali, Syed Ahtsham, 2021. "Do natural resources, urbanization, and value-adding manufacturing affect environmental quality? Evidence from the top ten manufacturing countries," Resources Policy, Elsevier, vol. 72(C).
    5. Li, Bowei & Shen, Yueqin, 2021. "Effects of land transfer quality on the application of organic fertilizer by large-scale farmers in China," Land Use Policy, Elsevier, vol. 100(C).
    6. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    7. Su, Yiqing & Araral, Eduardo & Wang, Yahua, 2020. "The effects of farmland use rights trading and labor outmigration on the governance of the irrigation commons: Evidence from China," Land Use Policy, Elsevier, vol. 91(C).
    8. Fei, Rilong & Lin, Ziyi & Chunga, Joseph, 2021. "How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector," Land Use Policy, Elsevier, vol. 103(C).
    9. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    10. Ru-Jin Huang & Yanlin Zhang & Carlo Bozzetti & Kin-Fai Ho & Jun-Ji Cao & Yongming Han & Kaspar R. Daellenbach & Jay G. Slowik & Stephen M. Platt & Francesco Canonaco & Peter Zotter & Robert Wolf & Sim, 2014. "High secondary aerosol contribution to particulate pollution during haze events in China," Nature, Nature, vol. 514(7521), pages 218-222, October.
    11. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    12. Dave S. Reay & Eric A. Davidson & Keith A. Smith & Pete Smith & Jerry M. Melillo & Frank Dentener & Paul J. Crutzen, 2012. "Global agriculture and nitrous oxide emissions," Nature Climate Change, Nature, vol. 2(6), pages 410-416, June.
    13. Haiou Yang & Wenbo Chen & Zhaofeng Liang, 2017. "Impact of Land Use on PM 2.5 Pollution in a Representative City of Middle China," IJERPH, MDPI, vol. 14(5), pages 1-14, April.
    14. Liu, Yansui, 2018. "Introduction to land use and rural sustainability in China," Land Use Policy, Elsevier, vol. 74(C), pages 1-4.
    15. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    16. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziming Bai & Xiaochen Zhang & Jiabin Xu & Cuixia Li, 2024. "Can Farmland Transfer Reduce Fertilizer Nonpoint Source Pollution? Evidence from China," Land, MDPI, vol. 13(6), pages 1-20, June.
    2. Meseret C. Abate & Zhen He & Baozhong Cai & Yuangji Huang & Geremew Betelhemabraham & Tesfaye Bayu & Amsalu K. Addis, 2024. "Environmental Impact of Agricultural Land Transfer in China: A Systematic Review on Sustainability," Sustainability, MDPI, vol. 16(15), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Munir, Qaiser & Lean, Hooi Hooi & Smyth, Russell, 2020. "CO2 emissions, energy consumption and economic growth in the ASEAN-5 countries: A cross-sectional dependence approach," Energy Economics, Elsevier, vol. 85(C).
    2. Abdelaziz Boukhelkhal, 2022. "Energy use, economic growth and CO2 emissions in Africa: does the environmental Kuznets curve hypothesis exist? New evidence from heterogeneous panel under cross-sectional dependence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13083-13110, November.
    3. Edmore Mahembe & Nicholas Mbaya Odhiambo, 2019. "Foreign aid, poverty and economic growth in developing countries: A dynamic panel data causality analysis," Cogent Economics & Finance, Taylor & Francis Journals, vol. 7(1), pages 1626321-162, January.
    4. Muhammad Azam & Zia Ur Rehman & Yusnidah Ibrahim, 2022. "Causal nexus in industrialization, urbanization, trade openness, and carbon emissions: empirical evidence from OPEC economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13990-14010, December.
    5. Lili Guo & Sihang Guo & Mengqian Tang & Mengying Su & Houjian Li, 2022. "Financial Support for Agriculture, Chemical Fertilizer Use, and Carbon Emissions from Agricultural Production in China," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
    6. Xie, Bofeng & Rehman, Mubeen Abdur & Zhang, Junyan & Yang, Runze, 2022. "Does the financialization of natural resources lead toward sustainability? An application of advance panel Granger non-causality," Resources Policy, Elsevier, vol. 79(C).
    7. Meseret Abatechanie & Baozhong Cai & Fang Shi & Yuanji Huang, 2022. "The Environmental and Socio-Economic Effect of Farmland Management Right Transfer in China: A Systematic Review," Land, MDPI, vol. 11(8), pages 1-21, August.
    8. Andreas A. Andrikopoulos & Dimitrios C. Gkountanis, 2011. "Issues and Models in Applied Econometrics: A partial survey," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 9(2), pages 107-165.
    9. Mitch Kunce, 2023. "Unemployment and Suicide in the United States: The Import of Addressing Cross-Sectional Dependence," Bulletin of Applied Economics, Risk Market Journals, vol. 10(1), pages 1-19.
    10. Lili Guo & Yuting Song & Shuang Zhao & Mengqian Tang & Yangli Guo & Mengying Su & Houjian Li, 2022. "Dynamic Linkage between Aging, Mechanizations and Carbon Emissions from Agricultural Production," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    11. Zeeshan Arshad & Margarita Robaina & Anabela Botelho, 2020. "Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 368-383.
    12. Bui Huy Nhuong & Ho Dinh Bao & Le Thanh Ha, 2024. "Embracing Green Foreign Direct Investment in a Journey toward Global Sustainable Economy: An Empirical Approach Using Statistical Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 435-446, September.
    13. Dongwon Lee & Yu-chin Chen, 2014. "What Makes a Commodity Currency?," Working Papers 201420, University of California at Riverside, Department of Economics.
    14. Wilman-Santiago Ochoa-Moreno & Byron Alejandro Quito & Carlos Andrés Moreno-Hurtado, 2021. "Foreign Direct Investment and Environmental Quality: Revisiting the EKC in Latin American Countries," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    15. Hussein Moghaddam & Robert M. Kunst, 2023. "The Role of Natural Gas in Mitigating Greenhouse Gas Emissions: The Environmental Kuznets Curve Hypothesis for Major Gas-Producing Countries," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    16. Fromentin, Vincent & Leon, Florian, 2019. "Remittances and credit in developed and developing countries: A dynamic panel analysis," Research in International Business and Finance, Elsevier, vol. 48(C), pages 310-320.
    17. Campo, Jacobo & Mendoza, Henry, 2018. "Gasto público y crecimiento económico: un análisis regional para Colombia, 1984-2012," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 88, pages 77-108, January.
    18. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    19. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    20. Shobande, Olatunji A. & Asongu, Simplice A., 2022. "The Critical Role of Education and ICT in Promoting Environmental Sustainability in Eastern and Southern Africa: A Panel VAR Approach," Technological Forecasting and Social Change, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:14:p:8387-:d:858953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.