IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920304136.html
   My bibliography  Save this article

Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches

Author

Listed:
  • Kırbaş, İsmail
  • Sözen, Adnan
  • Tuncer, Azim Doğuş
  • Kazancıoğlu, Fikret Şinasi

Abstract

In this study, confirmed COVID-19 cases of Denmark, Belgium, Germany, France, United Kingdom, Finland, Switzerland and Turkey were modeled with Auto-Regressive Integrated Moving Average (ARIMA), Nonlinear Autoregression Neural Network (NARNN) and Long-Short Term Memory (LSTM) approaches. Six model performance metric were used to select the most accurate model (MSE, PSNR, RMSE, NRMSE, MAPE and SMAPE). According to the results of the first step of the study, LSTM was found the most accurate model. In the second stage of the study, LSTM model was provided to make predictions in a 14-day perspective that is yet to be known. Results of the second step of the study shows that the total cumulative case increase rate is expected to decrease slightly in many countries.

Suggested Citation

  • Kırbaş, İsmail & Sözen, Adnan & Tuncer, Azim Doğuş & Kazancıoğlu, Fikret Şinasi, 2020. "Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920304136
    DOI: 10.1016/j.chaos.2020.110015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lingling Zhou & Lijing Yu & Ying Wang & Zhouqin Lu & Lihong Tian & Li Tan & Yun Shi & Shaofa Nie & Li Liu, 2014. "A Hybrid Model for Predicting the Prevalence of Schistosomiasis in Humans of Qianjiang City, China," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    2. Wei Wu & Junqiao Guo & Shuyi An & Peng Guan & Yangwu Ren & Linzi Xia & Baosen Zhou, 2015. "Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-13, August.
    3. U, JuHyok & Lu, PengYu & Kim, ChungSong & Ryu, UnSok & Pak, KyongSok, 2020. "A new LSTM based reversal point prediction method using upward/downward reversal point feature sets," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Lijing Yu & Lingling Zhou & Li Tan & Hongbo Jiang & Ying Wang & Sheng Wei & Shaofa Nie, 2014. "Application of a New Hybrid Model with Seasonal Auto-Regressive Integrated Moving Average (ARIMA) and Nonlinear Auto-Regressive Neural Network (NARNN) in Forecasting Incidence Cases of HFMD in Shenzhe," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    5. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    6. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Kafieh, Rahele & Saeedizadeh, Narges & Arian, Roya & Amini, Zahra & Serej, Nasim Dadashi & Vaezi, Atefeh & Javanmard, Shaghayegh Haghjooy, 2020. "Isfahan and Covid-19: Deep spatiotemporal representation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Zeroual, Abdelhafid & Harrou, Fouzi & Dairi, Abdelkader & Sun, Ying, 2020. "Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    8. Ekinci, Aykut, 2021. "Modelling and forecasting of growth rate of new COVID-19 cases in top nine affected countries: Considering conditional variance and asymmetric effect," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Ho, Andrew Fu Wah & Liu, Nan & Ong, Marcus Eng Hock & Cheong, Kang Hao, 2022. "A deep learning architecture for forecasting daily emergency department visits with acuity levels," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Nikola Anđelić & Sandi Baressi Šegota & Ivan Lorencin & Zdravko Jurilj & Tijana Šušteršič & Anđela Blagojević & Alen Protić & Tomislav Ćabov & Nenad Filipović & Zlatan Car, 2021. "Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    5. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    6. Rafael Pérez Abreu C. & Samantha Estrada & Héctor de-la-Torre-Gutiérrez, 2021. "A Two-Step Polynomial and Nonlinear Growth Approach for Modeling COVID-19 Cases in Mexico," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    7. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    8. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    10. Raydonal Ospina & João A. M. Gondim & Víctor Leiva & Cecilia Castro, 2023. "An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil," Mathematics, MDPI, vol. 11(14), pages 1-18, July.
    11. Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Yulan Li & Kun Ma, 2022. "A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    15. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    17. Abu Reza Md. Towfiqul Islam & Md. Hasanuzzaman & Md. Abul Kalam Azad & Roquia Salam & Farzana Zannat Toshi & Md. Sanjid Islam Khan & G. M. Monirul Alam & Sobhy M. Ibrahim, 2021. "Effect of meteorological factors on COVID-19 cases in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9139-9162, June.
    18. Lorenzo Menculini & Andrea Marini & Massimiliano Proietti & Alberto Garinei & Alessio Bozza & Cecilia Moretti & Marcello Marconi, 2021. "Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices," Forecasting, MDPI, vol. 3(3), pages 1-19, September.
    19. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    20. Myladis R. Cogollo & Gilberto González-Parra & Abraham J. Arenas, 2021. "Modeling and Forecasting Cases of RSV Using Artificial Neural Networks," Mathematics, MDPI, vol. 9(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920304136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.