IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i14p7650-d596746.html
   My bibliography  Save this article

LSTM Networks to Improve the Prediction of Harmful Algal Blooms in the West Coast of Sabah

Author

Listed:
  • Fatin Nadiah Yussof

    (Department of Mathematics, Faculty of Science and Technology, Universiti Teknologi Malaysia, Skudai 81310, Malaysia)

  • Normah Maan

    (Department of Mathematics, Faculty of Science and Technology, Universiti Teknologi Malaysia, Skudai 81310, Malaysia)

  • Mohd Nadzri Md Reba

    (Department of Mathematics, Faculty of Science and Technology, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
    Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, Skudai 81310, Malaysia)

Abstract

Harmful algal bloom (HAB) events have alarmed authorities of human health that have caused severe illness and fatalities, death of marine organisms, and massive fish killings. This work aimed to perform the long short-term memory (LSTM) method and convolution neural network (CNN) method to predict the HAB events in the West Coast of Sabah. The results showed that this method could be used to predict satellite time series data in which previous studies only used vector data. This paper also could identify and predict whether there is HAB occurrence in the region. A chlorophyll a concentration (Chl-a; mg/L) variable was used as an HAB indicator, where the data were obtained from MODIS and GEBCO bathymetry. The eight-day dataset interval was from January 2003 to December 2018. The results obtained showed that the LSTM model outperformed the CNN model in terms of accuracy using RMSE and the correlation coefficient r as the statistical criteria.

Suggested Citation

  • Fatin Nadiah Yussof & Normah Maan & Mohd Nadzri Md Reba, 2021. "LSTM Networks to Improve the Prediction of Harmful Algal Blooms in the West Coast of Sabah," IJERPH, MDPI, vol. 18(14), pages 1-14, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7650-:d:596746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/14/7650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/14/7650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    2. Thanongsak Xayasouk & HwaMin Lee & Giyeol Lee, 2020. "Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE) Models," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    3. Sangmok Lee & Donghyun Lee, 2018. "Improved Prediction of Harmful Algal Blooms in Four Major South Korea’s Rivers Using Deep Learning Models," IJERPH, MDPI, vol. 15(7), pages 1-15, June.
    4. Ashutosh Kumar & Tanvir Islam & Yoshihide Sekimoto & Chris Mattmann & Brian Wilson, 2020. "Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiyong Zhao & Yanzhou Li & Yongli Chen & Xi Qiao, 2022. "A Method of Cyanobacterial Concentrations Prediction Using Multispectral Images," Sustainability, MDPI, vol. 14(19), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Donghyun & Kim, Mingyu & Lee, Beomhui & Chae, Sangwon & Kwon, Sungjun & Kang, Sungwon, 2022. "Integrated explainable deep learning prediction of harmful algal blooms," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    2. Chih‐Hsuan Wang & Chia‐Rong Chang, 2023. "Forecasting air quality index considering socioeconomic indicators and meteorological factors: A data granularity perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1261-1274, August.
    3. Abubakar Ahmad Musa & Adamu Hussaini & Weixian Liao & Fan Liang & Wei Yu, 2023. "Deep Neural Networks for Spatial-Temporal Cyber-Physical Systems: A Survey," Future Internet, MDPI, vol. 15(6), pages 1-24, May.
    4. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    5. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    6. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    7. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    8. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    10. Hossein Jalali & Farshid Keynia & Faezeh Amirteimoury & Azim Heydari, 2024. "A Short-Term Air Pollutant Concentration Forecasting Method Based on a Hybrid Neural Network and Metaheuristic Optimization Algorithms," Sustainability, MDPI, vol. 16(11), pages 1-17, June.
    11. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
    12. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
    13. Endah Kristiani & Hao Lin & Jwu-Rong Lin & Yen-Hsun Chuang & Chin-Yin Huang & Chao-Tung Yang, 2022. "Short-Term Prediction of PM 2.5 Using LSTM Deep Learning Methods," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
    14. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    15. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    16. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    17. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    18. Li, Penghua & Zhang, Zijian & Grosu, Radu & Deng, Zhongwei & Hou, Jie & Rong, Yujun & Wu, Rui, 2022. "An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Mirza, Adeel Feroz & Mansoor, Majad & Usman, Muhammad & Ling, Qiang, 2023. "A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model," Energy, Elsevier, vol. 283(C).
    20. Tahmina Ajmal & Fazeel Mohammed & Martin S. Goodchild & Jipsy Sudarsanan & Sarah Halse, 2024. "Mitigating the Impact of Harmful Algal Blooms on Aquaculture Using Technological Interventions: Case Study on a South African Farm," Sustainability, MDPI, vol. 16(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7650-:d:596746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.