IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224012994.html
   My bibliography  Save this article

Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network

Author

Listed:
  • Peng, Shiliang
  • Fan, Lin
  • Zhang, Li
  • Su, Huai
  • He, Yuxuan
  • He, Qian
  • Wang, Xiao
  • Yu, Dejun
  • Zhang, Jinjun

Abstract

Energy consumption forecasting is essential for energy system integration and management. However, existing studies mainly focus on temporal features of energy consumption, which neglects the spatial correlation of variables with time information. Capturing the spatio-temporal relationships helps to improve forecasting accuracy and further promote energy dispatch. To tackle this problem, an explainable Convolutional Neural Network-Long Short Term Memory forecasting model is employed to effectively predict the total energy consumption by capturing the spatial and temporal features of multivariate time series. In the model, the autoencoder is used to achieve the nonlinear dimensionality reduction and transfer the data to a low-dimensional space. Furthermore, a Convolutional Neural Network is used to extract more effective features from the decoded data, and long short-term memory is employed to identify the temporal dependencies between extracted features and total energy consumption. Shapley additive explanation is introduced to interpret the outputs of the black-box model. The superior performance of the proposed method with high accuracy and good adaptability is verified by the comparisons with conventional forecasting models. This method provides an insight into the regional energy consumption analyzing contributions of weather variables to energy consumption, which helps administers in understanding regional energy performance for enhancing energy efficiency.

Suggested Citation

  • Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224012994
    DOI: 10.1016/j.energy.2024.131526
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224012994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.