IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0230114.html
   My bibliography  Save this article

Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data

Author

Listed:
  • Ashutosh Kumar
  • Tanvir Islam
  • Yoshihide Sekimoto
  • Chris Mattmann
  • Brian Wilson

Abstract

Nowcasting of precipitation is a difficult spatiotemporal task because of the non-uniform characterization of meteorological structures over time. Recently, convolutional LSTM has been shown to be successful in solving various complex spatiotemporal based problems. In this research, we propose a novel precipitation nowcasting architecture ‘Convcast’ to predict various short-term precipitation events using satellite data. We train Convcast with ten consecutive NASA’s IMERG precipitation data sets each at intervals of 30 minutes. We use the trained neural network model to predict the eleventh precipitation data of the corresponding ten precipitation sequence. Subsequently, the predicted precipitation data are used iteratively for precipitation nowcasting of up to 150 minutes lead time. Convcast achieves an overall accuracy of 0.93 with an RMSE of 0.805 mm/h for 30 minutes lead time, and an overall accuracy of 0.87 with an RMSE of 1.389 mm/h for 150 minutes lead time. Experiments on the test dataset demonstrate that Convcast consistently outperforms other state-of-the-art optical flow based nowcasting algorithms. Results from this research can be used for nowcasting of weather events from satellite data as well as for future on-board processing of precipitation data.

Suggested Citation

  • Ashutosh Kumar & Tanvir Islam & Yoshihide Sekimoto & Chris Mattmann & Brian Wilson, 2020. "Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-18, March.
  • Handle: RePEc:plo:pone00:0230114
    DOI: 10.1371/journal.pone.0230114
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230114
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0230114&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0230114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatin Nadiah Yussof & Normah Maan & Mohd Nadzri Md Reba, 2021. "LSTM Networks to Improve the Prediction of Harmful Algal Blooms in the West Coast of Sabah," IJERPH, MDPI, vol. 18(14), pages 1-14, July.
    2. Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Davide Luciano Luca & Giovanna Capparelli, 2022. "Rainfall nowcasting model for early warning systems applied to a case over Central Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 501-520, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0230114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.