IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i12p6413-d574447.html
   My bibliography  Save this article

Estimation of Heat-Attributable Mortality Using the Cross-Validated Best Temperature Metric in Switzerland and South Korea

Author

Listed:
  • Jae Young Lee

    (Environmental and Safety Engineering Department, Ajou University, Suwon 16499, Korea)

  • Martin Röösli

    (Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
    University of Basel, 4001 Basel, Switzerland)

  • Martina S. Ragettli

    (Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
    University of Basel, 4001 Basel, Switzerland)

Abstract

This study presents a novel method for estimating the heat-attributable fractions (HAF) based on the cross-validated best temperature metric. We analyzed the association of eight temperature metrics (mean, maximum, minimum temperature, maximum temperature during daytime, minimum temperature during nighttime, and mean, maximum, and minimum apparent temperature) with mortality and performed the cross-validation method to select the best model in selected cities of Switzerland and South Korea from May to September of 1995–2015. It was observed that HAF estimated using different metrics varied by 2.69–4.09% in eight cities of Switzerland and by 0.61–0.90% in six cities of South Korea. Based on the cross-validation method, mean temperature was estimated to be the best metric, and it revealed that the HAF of Switzerland and South Korea were 3.29% and 0.72%, respectively. Furthermore, estimates of HAF were improved by selecting the best city-specific model for each city, that is, 3.34% for Switzerland and 0.78% for South Korea. To the best of our knowledge, this study is the first to observe the uncertainty of HAF estimation originated from the selection of temperature metric and to present the HAF estimation based on the cross-validation method.

Suggested Citation

  • Jae Young Lee & Martin Röösli & Martina S. Ragettli, 2021. "Estimation of Heat-Attributable Mortality Using the Cross-Validated Best Temperature Metric in Switzerland and South Korea," IJERPH, MDPI, vol. 18(12), pages 1-9, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6413-:d:574447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/12/6413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/12/6413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiantian Li & Radley M. Horton & Patrick L. Kinney, 2013. "Projections of seasonal patterns in temperature- related deaths for Manhattan, New York," Nature Climate Change, Nature, vol. 3(8), pages 717-721, August.
    2. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina S. Ragettli & Apolline Saucy & Benjamin Flückiger & Danielle Vienneau & Kees de Hoogh & Ana M. Vicedo-Cabrera & Christian Schindler & Martin Röösli, 2023. "Explorative Assessment of the Temperature–Mortality Association to Support Health-Based Heat-Warning Thresholds: A National Case-Crossover Study in Switzerland," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    2. Jae Young Lee, 2022. "A Subgroup Method of Projecting Future Vulnerability and Adaptation to Extreme Heat," Sustainability, MDPI, vol. 14(24), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisaveta P. Petkova & Daniel A. Bader & G. Brooke Anderson & Radley M. Horton & Kim Knowlton & Patrick L. Kinney, 2014. "Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities," IJERPH, MDPI, vol. 11(11), pages 1-13, October.
    2. Hildegaard D. Link & José Pillich & Yehuda L. Klein, 2014. "Peak Electric Load Relief in Northern Manhattan," SAGE Open, , vol. 4(3), pages 21582440145, August.
    3. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    4. Kijin Seong & Junfeng Jiao & Akhil Mandalapu, 2023. "Evaluating the effects of heat vulnerability on heat-related emergency medical service incidents: Lessons from Austin, Texas," Environment and Planning B, , vol. 50(3), pages 776-795, March.
    5. Jean C. Bikomeye & Sima Namin & Chima Anyanwu & Caitlin S. Rublee & Jamie Ferschinger & Ken Leinbach & Patricia Lindquist & August Hoppe & Lawrence Hoffman & Justin Hegarty & Dwayne Sperber & Kirsten , 2021. "Resilience and Equity in a Time of Crises: Investing in Public Urban Greenspace Is Now More Essential Than Ever in the US and Beyond," IJERPH, MDPI, vol. 18(16), pages 1-39, August.
    6. Aleš Urban & Hana Hanzlíková & Jan Kyselý & Eva Plavcová, 2017. "Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves," IJERPH, MDPI, vol. 14(12), pages 1-19, December.
    7. Jae Young Lee & Woo-Seop Lee & Kristie L. Ebi & Ho Kim, 2019. "Temperature-Related Summer Mortality Under Multiple Climate, Population, and Adaptation Scenarios," IJERPH, MDPI, vol. 16(6), pages 1-9, March.
    8. Ru Cao & Yuxin Wang & Jing Huang & Jie He & Pitakchon Ponsawansong & Jianbo Jin & Zhihu Xu & Teng Yang & Xiaochuan Pan & Tippawan Prapamontol & Guoxing Li, 2021. "The Mortality Effect of Apparent Temperature: A Multi-City Study in Asia," IJERPH, MDPI, vol. 18(9), pages 1-12, April.
    9. Richard S. J. Tol, 2016. "The Impacts Of Climate Change According To The Ipcc," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-20, February.
    10. Christofer Åström & Daniel Oudin Åström & Camilla Andersson & Kristie L. Ebi & Bertil Forsberg, 2017. "Vulnerability Reduction Needed to Maintain Current Burdens of Heat-Related Mortality in a Changing Climate—Magnitude and Determinants," IJERPH, MDPI, vol. 14(7), pages 1-10, July.
    11. Vinod Thomas & Jose Albert & Cameron Hepburn, 2014. "Contributors to the frequency of intense climate disasters in Asia-Pacific countries," Climatic Change, Springer, vol. 126(3), pages 381-398, October.
    12. Ruth McDermott-Levy & Madeline Scolio & Kabindra M. Shakya & Caroline H. Moore, 2021. "Factors That Influence Climate Change-Related Mortality in the United States: An Integrative Review," IJERPH, MDPI, vol. 18(15), pages 1-21, August.
    13. Jan C. Semenza, 2014. "Climate Change and Human Health," IJERPH, MDPI, vol. 11(7), pages 1-7, July.
    14. Pan Ma & Shigong Wang & Xingang Fan & Tanshi Li, 2016. "The Impacts of Air Temperature on Accidental Casualties in Beijing, China," IJERPH, MDPI, vol. 13(11), pages 1-13, November.
    15. Tamás Hajdu & Gábor Hajdu, 2021. "Post-conception heat exposure increases clinically unobserved pregnancy losses," CERS-IE WORKING PAPERS 2104, Institute of Economics, Centre for Economic and Regional Studies.
    16. Tao Liu & Weilin Zeng & Hualiang Lin & Shannon Rutherford & Jianpeng Xiao & Xing Li & Zhihao Li & Zhengmin Qian & Baixiang Feng & Wenjun Ma, 2016. "Tempo-Spatial Variations of Ambient Ozone-Mortality Associations in the USA: Results from the NMMAPS Data," IJERPH, MDPI, vol. 13(9), pages 1-14, August.
    17. Jae Young Lee, 2022. "A Subgroup Method of Projecting Future Vulnerability and Adaptation to Extreme Heat," Sustainability, MDPI, vol. 14(24), pages 1-9, December.
    18. Tao Liu & Zhoupeng Ren & Yonghui Zhang & Baixiang Feng & Hualiang Lin & Jianpeng Xiao & Weilin Zeng & Xing Li & Zhihao Li & Shannon Rutherford & Yanjun Xu & Shao Lin & Philip C. Nasca & Yaodong Du & J, 2019. "Modification Effects of Population Expansion, Ageing, and Adaptation on Heat-Related Mortality Risks Under Different Climate Change Scenarios in Guangzhou, China," IJERPH, MDPI, vol. 16(3), pages 1-17, January.
    19. Dholakia, Hem H. & Mishra, Vimal & Garg, Amit, 2015. "Predicted Increases in Heat related Mortality under Climate Change in Urban India," IIMA Working Papers WP2015-05-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Michael T Schmeltz & Grace Sembajwe & Peter J Marcotullio & Jean A Grassman & David U Himmelstein & Stephanie Woolhandler, 2015. "Identifying Individual Risk Factors and Documenting the Pattern of Heat-Related Illness through Analyses of Hospitalization and Patterns of Household Cooling," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6413-:d:574447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.