IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i12p6374-d573865.html
   My bibliography  Save this article

Monitoring the Spatiotemporal Difference in Glacier Elevation on Bogda Mountain from 2000 to 2017

Author

Listed:
  • Weibing Du

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
    State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)

  • Ningke Shi

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Linjuan Xu

    (Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission of the Ministry of Water Resources, Zhengzhou 450003, China)

  • Shiqiong Zhang

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Dandan Ma

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Shuangting Wang

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

Abstract

The difference in glacier surface elevation is a sensitive indicator of climate change and is also important for disaster warning and water supply. In this paper, 25 glaciers on Bogda Mountain, in the eastern Tianshan Mountains, are selected as the study object as they are typical of glaciers in arid or semi-arid areas with importance for water supply. The Repeat Orbit Interferometry (ROI) method is used to survey the surface elevation of these glaciers using Sentinel-1A Radar data from 2017. Using data from the Shuttle Radar Topography Mission (SRTM) and a Digital Elevation Model (DEM), the difference in the glacier surface elevation between 2000 and 2017 is obtained. A scheme to evaluate the accuracy of estimated variations in glacier surface elevation is proposed in this article. By considering the surfaces of lakes in the study region as ideal horizontal planes, the average standard deviation (SD) value of the lake elevation is taken as the error caused by the radar sensor and observing conditions. The SD of the lake elevation is used as an index to evaluate the error in the estimated variation of the glacier surface elevation, and the obtained SD values indicate that the result obtained using the ROI method is reliable. Additionally, the glacier surface elevation variation pattern and a Logarithmic Fitting Model (LFM) are used to reduce the error in high-altitude glacial accumulation areas to improve the estimation of the difference in the glacier surface elevation obtained using ROI. The average SD of the elevation of the 12 lakes is ±2.87 m, which shows that the obtained glacier surface elevations are reliable. This article concludes that, between 2000 and 2017, the surface elevation of glaciers on Bogda Mountain decreased by an average of 11.6 ± 1.3 m, corresponding to an average decrease rate of 0.68 m/a, and glaciers volume decreased by an average of 0.504 km 3 . Meanwhile, the surface elevations of the lakes increased by an average of 8.16 m. The decrease of glacier surface elevation leads to the expansion of glacial lakes. From the north slope clockwise to the south slope, the glacier elevation variation showed a decreasing trend, and the elevation variation gradually increased from the south slope to the north slope. With the increase of glacier altitude, the variation of glacier surface elevation gradually changed from negative to positive. The findings of this article suggest that the rate of glacier retreat on Bogda Mountain increased from 2000 to 2017.

Suggested Citation

  • Weibing Du & Ningke Shi & Linjuan Xu & Shiqiong Zhang & Dandan Ma & Shuangting Wang, 2021. "Monitoring the Spatiotemporal Difference in Glacier Elevation on Bogda Mountain from 2000 to 2017," IJERPH, MDPI, vol. 18(12), pages 1-19, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6374-:d:573865
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/12/6374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/12/6374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weibing Du & Weiqian Ji & Linjuan Xu & Shuangting Wang, 2020. "Deformation Time Series and Driving-Force Analysis of Glaciers in the Eastern Tienshan Mountains Using the SBAS InSAR Method," IJERPH, MDPI, vol. 17(8), pages 1-18, April.
    2. Andreas Kääb & Etienne Berthier & Christopher Nuth & Julie Gardelle & Yves Arnaud, 2012. "Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas," Nature, Nature, vol. 488(7412), pages 495-498, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manish Mehta & Vinit Kumar & Pankaj Kunmar & Kalachand Sain, 2023. "Response of the Thick and Thin Debris-Covered Glaciers between 1971 and 2019 in Ladakh Himalaya, India—A Case Study from Pensilungpa and Durung-Drung Glaciers," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    2. Rajesh Kumar & Shaktiman Singh & Ramesh Kumar & Atar Singh & Anshuman Bhardwaj & Lydia Sam & Surjeet Singh Randhawa & Akhilesh Gupta, 2016. "Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3475-3492, August.
    3. Kriti Mukherjee & Atanu Bhattacharya & Tino Pieczonka & Susmita Ghosh & Tobias Bolch, 2018. "Glacier mass budget and climate reanalysis data indicate a climatic shift around 2000 in Lahaul-Spiti, western Himalaya," Climatic Change, Springer, vol. 148(1), pages 219-233, May.
    4. Rajiv Chaturvedi & Anil Kulkarni & Yogesh Karyakarte & Jaideep Joshi & G. Bala, 2014. "Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections," Climatic Change, Springer, vol. 123(2), pages 315-328, March.
    5. Haoyu Jin & Qin Ju & Zhongbo Yu & Jie Hao & Huanghe Gu & Henan Gu & Wei Li, 2019. "Simulation of snowmelt runoff and sensitivity analysis in the Nyang River Basin, southeastern Qinghai-Tibetan Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 931-950, November.
    6. Jessica L. Raff & Steven L. Goodbred & Jennifer L. Pickering & Ryan S. Sincavage & John C. Ayers & Md. Saddam Hossain & Carol A. Wilson & Chris Paola & Michael S. Steckler & Dhiman R. Mondal & Jean-Lo, 2023. "Sediment delivery to sustain the Ganges-Brahmaputra delta under climate change and anthropogenic impacts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Hong Li & Chong-Yu Xu & Stein Beldring & Lena Merete Tallaksen & Sharad K. Jain, 2016. "Water Resources Under Climate Change in Himalayan Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 843-859, January.
    8. Tauheed Ullah Khan & Abdul Mannan & Charlotte E. Hacker & Shahid Ahmad & Muhammad Amir Siddique & Barkat Ullah Khan & Emad Ud Din & Minhao Chen & Chao Zhang & Moazzam Nizami & Xiaofeng Luan, 2021. "Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard ( Panthera uncia ) Habitat in Pakistan," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    9. Avtar Singh Jasrotia & Suhail Ahmad & Praveen Kumar Thakur & Qamer Ridwan & Zishan Ahmad Wani & Saad Abdurahamn M. Alamri & Sazada Siddiqui & Mahmoud Moustafa, 2023. "Long-Term Geospatial Observations of the Drang Drung and Pensilungpa Glaciers, North Western Himalaya, India, from 1976 to 2020," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    10. Yaming Pan & Weibing Du & Dandan Ma & Xiaoxuan Lyu & Chaoying Cheng, 2022. "Comparison of Typical Alpine Lake Surface Elevation Variations and Different Driving Forces by Remote Sensing Altimetry Method," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    11. Arshad Ashraf & Rakhshan Roohi & Rozina Naz & Naveed Mustafa, 2014. "Monitoring cryosphere and associated flood hazards in high mountain ranges of Pakistan using remote sensing technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 933-949, September.
    12. Hong Li & Chong-Yu Xu & Stein Beldring & Lena Tallaksen & Sharad Jain, 2016. "Water Resources Under Climate Change in Himalayan Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 843-859, January.
    13. Haibo Tian & Yuxiang Tao & Pinglang Kou & Andres Alonso & Xiaobo Luo & Chenyu Gong & Yunpeng Fan & Changjian Lei & Yongcheng Gou, 2023. "Monitoring and evaluation of gully erosion in China's largest loess tableland based on SBAS-InSAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2435-2454, July.
    14. Chunqiao Song & Yongwei Sheng, 2016. "Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis," Climatic Change, Springer, vol. 135(3), pages 493-507, April.
    15. Muhammad Shafeeque & Yi Luo & Arfan Arshad & Sher Muhammad & Muhammad Ashraf & Quoc Bao Pham, 2023. "Assessment of climate change impacts on glacio-hydrological processes and their variations within critical zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2721-2748, February.
    16. Cheng Duan & Peili Shi & Minghua Song & Xianzhou Zhang & Ning Zong & Caiping Zhou, 2019. "Land Use and Land Cover Change in the Kailash Sacred Landscape of China," Sustainability, MDPI, vol. 11(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6374-:d:573865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.