IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i8p2836-d348083.html
   My bibliography  Save this article

Deformation Time Series and Driving-Force Analysis of Glaciers in the Eastern Tienshan Mountains Using the SBAS InSAR Method

Author

Listed:
  • Weibing Du

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Weiqian Ji

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Linjuan Xu

    (Key Laboratory of Sediment, Ministry of Water Resources, Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou 450003, China
    Department of Hydraulic Engineering, State Key Laboratory of Hydro-Science and Engineering, Tsinghua University, Beijing 100084, China)

  • Shuangting Wang

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

Abstract

Glacier melting is one of the important causes of glacier morphology change and can provide basic parameters for calculating glacier volume change and glacier mass balance, which, in turn, is important for evaluating water resources. However, it is difficult to obtain large-scale time series of glacier changes due to the cloudy and foggy conditions which are typical of mountain areas. Gravity-measuring satellites and laser altimetry satellites can monitor changes in glacier volume over a wide area, while synthetic-aperture radar satellites can monitoring glacier morphology with a high spatial and temporal resolution. In this article, an interferometric method using a short temporal baseline and a short spatial baseline, called the Small Baseline Subsets (SBAS) Interferometric Synthetic-Aperture Radar (InSAR) method, was used to study the average rate of glacier deformation on Karlik Mountain, in the Eastern Tienshan Mountains, China, by using 19 Sentinel-1A images from November 2017 to December 2018. Thus, a time series analysis of glacier deformation was conducted. It was found that the average glacier deformation in the study region was −11.77 ± 9.73 mm/year, with the observation sites generally moving away from the satellite along the Line of Sight (LOS). Taking the ridge line as the dividing line, it was found that the melting rate of southern slopes was higher than that of northern slopes. According to the perpendicular of the mountain direction, the mountain was divided into an area in the northwest with large glaciers (Area I) and an area in the southeast with small glaciers (Area II). It was found that the melting rate in the southeast area was larger than that in the northwest area. Additionally, through the analysis of temperature and precipitation data, it was found that precipitation played a leading role in glacier deformation in the study region. Through the statistical analysis of the deformation, it was concluded that the absolute value of deformation is large at elevations below 4200 m while the absolute value of the deformation is very small at elevations above 4500 m; the direction of deformation is always away from the satellite along the LOS and the absolute value of glacier deformation decreases with increasing elevation.

Suggested Citation

  • Weibing Du & Weiqian Ji & Linjuan Xu & Shuangting Wang, 2020. "Deformation Time Series and Driving-Force Analysis of Glaciers in the Eastern Tienshan Mountains Using the SBAS InSAR Method," IJERPH, MDPI, vol. 17(8), pages 1-18, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2836-:d:348083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/8/2836/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/8/2836/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Annina Sorg & Tobias Bolch & Markus Stoffel & Olga Solomina & Martin Beniston, 2012. "Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)," Nature Climate Change, Nature, vol. 2(10), pages 725-731, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haibo Tian & Yuxiang Tao & Pinglang Kou & Andres Alonso & Xiaobo Luo & Chenyu Gong & Yunpeng Fan & Changjian Lei & Yongcheng Gou, 2023. "Monitoring and evaluation of gully erosion in China's largest loess tableland based on SBAS-InSAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2435-2454, July.
    2. Weibing Du & Ningke Shi & Linjuan Xu & Shiqiong Zhang & Dandan Ma & Shuangting Wang, 2021. "Monitoring the Spatiotemporal Difference in Glacier Elevation on Bogda Mountain from 2000 to 2017," IJERPH, MDPI, vol. 18(12), pages 1-19, June.
    3. Yaming Pan & Weibing Du & Dandan Ma & Xiaoxuan Lyu & Chaoying Cheng, 2022. "Comparison of Typical Alpine Lake Surface Elevation Variations and Different Driving Forces by Remote Sensing Altimetry Method," IJERPH, MDPI, vol. 19(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyan Wang & Tao Yang & Chong-Yu Xu & Lihua Xiong & Pengfei Shi & Zhenya Li, 2020. "The response of runoff components and glacier mass balance to climate change for a glaciated high-mountainous catchment in the Tianshan Mountains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1239-1258, November.
    2. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Qun Liu & Zhaoping Yang & Cuirong Wang & Fang Han, 2019. "Temporal-Spatial Variations and Influencing Factor of Land Use Change in Xinjiang, Central Asia, from 1995 to 2015," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    4. Yihao Zhang & Jianzhong Yan & Xian Cheng & Xinjun He, 2021. "Wetland Changes and Their Relation to Climate Change in the Pumqu Basin, Tibetan Plateau," IJERPH, MDPI, vol. 18(5), pages 1-24, March.
    5. Ruan, Hongwei & Yu, Jingjie & Wang, Ping & Hao, Lingang & Wang, Zhenlong, 2023. "Relieving water stress by optimizing crop structure is a practicable approach in arid transboundary rivers of Central Asia," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Huili He & Rafiq Hamdi & Geping Luo & Peng Cai & Xiuliang Yuan & Miao Zhang & Piet Termonia & Philippe Maeyer & Alishir Kurban, 2022. "The summer cooling effect under the projected restoration of Aral Sea in Central Asia," Climatic Change, Springer, vol. 174(1), pages 1-21, September.
    7. Haijun Deng & N. C. Pepin & Qun Liu & Yaning Chen, 2018. "Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016," Climatic Change, Springer, vol. 151(3), pages 379-393, December.
    8. Steven G. Pueppke & Margulan K. Iklasov & Volker Beckmann & Sabir T. Nurtazin & Niels Thevs & Sayat Sharakhmetov & Buho Hoshino, 2018. "Challenges for Sustainable Use of the Fish Resources from Lake Balkhash, a Fragile Lake in an Arid Ecosystem," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    9. Shan Zou & Abuduwaili Jilili & Weili Duan & Philippe De Maeyer & Tim Van de Voorde, 2019. "Human and Natural Impacts on the Water Resources in the Syr Darya River Basin, Central Asia," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    10. Václav Šípek & Michal Jenicek & Jan Hnilica & Nikol Zelíková, 2021. "Catchment Storage and its Influence on Summer Low Flows in Central European Mountainous Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2829-2843, July.
    11. Wenhao Dong & Yi Ming & Yi Deng & Zhaoyi Shen, 2024. "Recent wetting trend over Taklamakan and Gobi Desert dominated by internal variability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Peña‐Guerrero, Mayra Daniela & Umirbekov, Atabek & Tarasova, Larisa & Müller, Daniel, 2022. "Comparing the performance of high‐resolution global precipitation products across topographic and climatic gradients of Central Asia," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(11), pages 5554-5569.
    13. Ram Shah & Subodh Sharma & Peter Haase & Sonja Jähnig & Steffen Pauls, 2015. "The climate sensitive zone along an altitudinal gradient in central Himalayan rivers: a useful concept to monitor climate change impacts in mountain regions," Climatic Change, Springer, vol. 132(2), pages 265-278, September.
    14. Chaofan Li & Qifei Han & Geping Luo & Chengyi Zhao & Shoubo Li & Yuangang Wang & Dongsheng Yu, 2018. "Effects of Cropland Conversion and Climate Change on Agrosystem Carbon Balance of China’s Dryland: A Typical Watershed Study," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    15. Xiangyao Meng & Yongqiang Liu & Yan Qin & Weiping Wang & Mengxiao Zhang & Kun Zhang, 2022. "Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    16. Yu, Yang & Yu, Ruide & Chen, Xi & Yu, Guoan & Gan, Miao & Disse, Markus, 2017. "Agricultural water allocation strategies along the oasis of Tarim River in Northwest China," Agricultural Water Management, Elsevier, vol. 187(C), pages 24-36.
    17. Christopher White & Trevor Tanton & David Rycroft, 2014. "The Impact of Climate Change on the Water Resources of the Amu Darya Basin in Central Asia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5267-5281, December.
    18. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Olivier Damette & Stephane Goutte & Qing Pei, 2020. "Climate and nomadic migration in a nonlinear world: evidence of the historical China," Climatic Change, Springer, vol. 163(4), pages 2055-2071, December.
    20. Mengru Wei & Zhe Yuan & Jijun Xu & Mengqi Shi & Xin Wen, 2022. "Attribution Assessment and Prediction of Runoff Change in the Han River Basin, China," IJERPH, MDPI, vol. 19(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2836-:d:348083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.