IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4067-d782587.html
   My bibliography  Save this article

Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model

Author

Listed:
  • Xiangyao Meng

    (College of Geographical Science, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Yongqiang Liu

    (College of Geographical Science, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Yan Qin

    (College of Geographical Science, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Weiping Wang

    (College of Geographical Science, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Mengxiao Zhang

    (College of Geographical Science, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Kun Zhang

    (College of Geographical Science, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

Abstract

Global warming affects the hydrological characteristics of the cryosphere. In arid and semi-arid regions where precipitation is scarce, glaciers and snowmelt water assume important recharge sources for downstream rivers. Therefore, the simulation of snowmelt water runoff in mountainous areas is of great significance in hydrological research. In this paper, taking the Hutubi River Basin in the Tianshan Mountains as the study area, we used the “MODIS Daily Cloud-free Snow Cover 500 m Dataset over China” (MODIS_CGF_SCE) to carry out the Snowmelt Runoff Model (SRM) simulation and evaluated the simulation accuracy. The results showed that: (1) The SRM preferably simulated the characteristics of the average daily flow variation of the Hutubi River from May to October, from 2003–2009. The monthly total runoff was maximum in July and minimum in October. Extreme precipitation events influenced the formation of flood peaks, and the interannual variation trend of total runoff from May to October was increased. (2) The mean value of the volume difference ( D V ) during the model validation period was 8.85%, and the coefficient of determination ( R 2 ) was 0.73. In general, the SRM underestimates the runoff of the Hutubi River, and the simulation accuracy is more accurate in the normal water period than in the high-water period. (3) By analyzing MODIS_CGF_SCE from 2003 to 2009, areas above 3200 m elevation in the Hutubi River Basin were classified as permanent snow areas, and areas below 3200 m were classified as seasonal snow areas. In October, the snow area in the Hutubi River Basin gradually increased, and the increase in snow cover in the permanent snow area was greater than that in the seasonal snow area. The snowmelt period was from March to May in the seasonal snow area and from May to early July in the permanent snow area, and the minimum snow cover was 0.7%.

Suggested Citation

  • Xiangyao Meng & Yongqiang Liu & Yan Qin & Weiping Wang & Mengxiao Zhang & Kun Zhang, 2022. "Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4067-:d:782587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hans Lievens & Matthias Demuzere & Hans-Peter Marshall & Rolf H. Reichle & Ludovic Brucker & Isis Brangers & Patricia de Rosnay & Marie Dumont & Manuela Girotto & Walter W. Immerzeel & Tobias Jonas & , 2019. "Snow depth variability in the Northern Hemisphere mountains observed from space," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Yan Liu & Lu Xinyu & Zhang Liancheng & Li Yang & Ji Chunrong & Wang Ni & Zhang Juan, 2021. "Quantifying rain, snow and glacier meltwater in river discharge during flood events in the Manas River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1137-1158, August.
    3. Annina Sorg & Tobias Bolch & Markus Stoffel & Olga Solomina & Martin Beniston, 2012. "Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)," Nature Climate Change, Nature, vol. 2(10), pages 725-731, October.
    4. Yue Qin & John T. Abatzoglou & Stefan Siebert & Laurie S. Huning & Amir AghaKouchak & Justin S. Mankin & Chaopeng Hong & Dan Tong & Steven J. Davis & Nathaniel D. Mueller, 2020. "Agricultural risks from changing snowmelt," Nature Climate Change, Nature, vol. 10(5), pages 459-465, May.
    5. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    6. Jouni Pulliainen & Kari Luojus & Chris Derksen & Lawrence Mudryk & Juha Lemmetyinen & Miia Salminen & Jaakko Ikonen & Matias Takala & Juval Cohen & Tuomo Smolander & Johannes Norberg, 2020. "Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018," Nature, Nature, vol. 581(7808), pages 294-298, May.
    7. H. Biemans & C. Siderius & A. F. Lutz & S. Nepal & B. Ahmad & T. Hassan & W. Bloh & R. R. Wijngaard & P. Wester & A. B. Shrestha & W. W. Immerzeel, 2019. "Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain," Nature Sustainability, Nature, vol. 2(7), pages 594-601, July.
    8. Jouni Pulliainen & Kari Luojus & Chris Derksen & Lawrence Mudryk & Juha Lemmetyinen & Miia Salminen & Jaakko Ikonen & Matias Takala & Juval Cohen & Tuomo Smolander & Johannes Norberg, 2020. "Publisher Correction: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018," Nature, Nature, vol. 582(7813), pages 18-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Yang & Shiwei Liu & Cunde Xiao & Cuiyang Feng & Chenyu Li, 2021. "Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin of China: An Input–Output Analysis," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    2. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. R. R. McCrary & L. O. Mearns & M. R. Abel & S. Biner & M. S. Bukovsky, 2022. "Projections of North American snow from NA-CORDEX and their uncertainties, with a focus on model resolution," Climatic Change, Springer, vol. 170(3), pages 1-25, February.
    4. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    6. Michel Wortmann & Doris Duethmann & Christoph Menz & Tobias Bolch & Shaochun Huang & Jiang Tong & Zbigniew W. Kundzewicz & Valentina Krysanova, 2022. "Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan," Climatic Change, Springer, vol. 171(3), pages 1-24, April.
    7. Katherine Hanly & Graham McDowell & James Tricker, 2023. "Climbing through Climate Change in the Canadian Rockies: Guides’ Experiences of Route Transformation on Mt. Athabasca," Tourism and Hospitality, MDPI, vol. 4(4), pages 1-20, October.
    8. Bo Su & Cunde Xiao & Deliang Chen & Dahe Qin & Yongjian Ding, 2019. "Cryosphere Services and Human Well-Being," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    9. Keyvan Malek & Patrick Reed & Jennifer Adam & Tina Karimi & Michael Brady, 2020. "Water rights shape crop yield and revenue volatility tradeoffs for adaptation in snow dependent systems," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    10. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    11. Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    12. Hengzhou Xu & Chuanrong Zhang & Weidong Li & Wenjing Zhang & Hongchun Yin, 2018. "Economic growth and carbon emission in China:a spatial econometric Kuznets curve?," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(1), pages 11-28.
    13. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    14. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    15. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    16. Xiaoyan Wang & Tao Yang & Chong-Yu Xu & Lihua Xiong & Pengfei Shi & Zhenya Li, 2020. "The response of runoff components and glacier mass balance to climate change for a glaciated high-mountainous catchment in the Tianshan Mountains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1239-1258, November.
    17. Potter, Nicholas A. & Hrozencik, R. Aaron & Wallander, Steven, 2023. "Irrigation Organizations: Water Inflows and Outflows," Economic Brief 338976, United States Department of Agriculture, Economic Research Service.
    18. Leiwen Jiang & Karen Hardee, 2011. "How do Recent Population Trends Matter to Climate Change?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(2), pages 287-312, April.
    19. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    20. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4067-:d:782587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.