IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i23p8877-d453266.html
   My bibliography  Save this article

Prevalence and Subtype Distribution of Blastocystis Infection in Patients with Diabetes Mellitus in Thailand

Author

Listed:
  • Noppon Popruk

    (Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand)

  • Satakamol Prasongwattana

    (Department of Nursing, Bang Pa-in Hospital, Bang Pa-in District, Phra Nakhon Si Ayutthaya 13160, Thailand)

  • Aongart Mahittikorn

    (Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand)

  • Attakorn Palasuwan

    (Oxidation in Red Cell Disorders Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand)

  • Supaluk Popruk

    (Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand)

  • Duangdao Palasuwan

    (Oxidation in Red Cell Disorders Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand)

Abstract

Diabetes mellitus (DM) is a major global public health problem with an increasing prevalence. DM increases the risk of infections caused by bacteria, fungi, viruses, and parasites. We examined the prevalence, subtypes, and risk factors of Blastocystis infection in patients with and without DM in central Thailand. Stool samples and questionnaires were obtained from 130 people in the DM group and 100 people in the non-DM group. Blastocystis infection was identified via a nested polymerase chain reaction and subtyped via sequencing of the partial small-subunit ribosomal RNA (SSU rRNA) gene. Analysis of potential risk factors was conducted via binary logistic regression. The overall prevalence of Blastocystis infection was 10.8%, including rates of 9% and 12.3% in the non-DM and DM groups, respectively. The most prevalent subtype was ST3, followed by ST1, and ST4. Factors that potentially increased the risk of Blastocystis infection include patients being >65 years old, the presence of DM, a DM duration of ≥10 years, a low level of education, and animal ownership. In conclusion, this is the first study of Blastocystis infection in DM, and a high prevalence was found among this population. Therefore, health education promoting sanitation and hygiene is necessary to reduce and prevent infection in the community.

Suggested Citation

  • Noppon Popruk & Satakamol Prasongwattana & Aongart Mahittikorn & Attakorn Palasuwan & Supaluk Popruk & Duangdao Palasuwan, 2020. "Prevalence and Subtype Distribution of Blastocystis Infection in Patients with Diabetes Mellitus in Thailand," IJERPH, MDPI, vol. 17(23), pages 1-12, November.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:23:p:8877-:d:453266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/23/8877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/23/8877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junjie Qin & Yingrui Li & Zhiming Cai & Shenghui Li & Jianfeng Zhu & Fan Zhang & Suisha Liang & Wenwei Zhang & Yuanlin Guan & Dongqian Shen & Yangqing Peng & Dongya Zhang & Zhuye Jie & Wenxian Wu & Yo, 2012. "A metagenome-wide association study of gut microbiota in type 2 diabetes," Nature, Nature, vol. 490(7418), pages 55-60, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amanee Abu & Chantira Sutthikornchai & Aongart Mahittikorn & Khuanchai Koompapong & Rachatawan Chiabchalard & Dumrongkiet Arthan & Ngamphol Soonthornworasiri & Supaluk Popruk, 2022. "Prevalence and Subtype Distribution of Blastocystis Isolated from School-Aged Children in the Thai-Myanmar Border, Ratchaburi Province, Thailand," IJERPH, MDPI, vol. 20(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lijuan Kong & Qijin Zhao & Xiaojing Jiang & Jinping Hu & Qian Jiang & Li Sheng & Xiaohong Peng & Shusen Wang & Yibing Chen & Yanjun Wan & Shaocong Hou & Xingfeng Liu & Chunxiao Ma & Yan Li & Li Quan &, 2024. "Trimethylamine N-oxide impairs β-cell function and glucose tolerance," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Can Cui & Susheela P. Singh & Ana‐Maria Staicu & Brian J. Reich, 2021. "Bayesian variable selection for high‐dimensional rank data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    3. Kerstin Thriene & Karin B. Michels, 2023. "Human Gut Microbiota Plasticity throughout the Life Course," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    4. Maja Czerwińska-Rogowska & Karolina Skonieczna-Żydecka & Krzysztof Kaseja & Karolina Jakubczyk & Joanna Palma & Marta Bott-Olejnik & Sławomir Brzozowski & Ewa Stachowska, 2022. "Kitchen Diet vs. Industrial Diets—Impact on Intestinal Barrier Parameters among Stroke Patients," IJERPH, MDPI, vol. 19(10), pages 1-11, May.
    5. Daphna Rothschild & Sigal Leviatan & Ariel Hanemann & Yossi Cohen & Omer Weissbrod & Eran Segal, 2022. "An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-20, March.
    6. Doris R. Pierce & Malcolm McDonald & Lea Merone & Luke Becker & Fintan Thompson & Chris Lewis & Rachael Y. M. Ryan & Sze Fui Hii & Patsy A. Zendejas-Heredia & Rebecca J. Traub & Matthew A. Field & Ton, 2023. "Effect of experimental hookworm infection on insulin resistance in people at risk of type 2 diabetes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Jim Parker & Claire O’Brien & Jason Hawrelak & Felice L. Gersh, 2022. "Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    8. Seung Jin Han & Kyoung Hwa Ha & Ja Young Jeon & Hae Jin Kim & Kwan Woo Lee & Dae Jung Kim, 2015. "Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome," IJERPH, MDPI, vol. 12(9), pages 1-14, September.
    9. Magdalena Jastrzębska & Urszula Wachowska & Marta K. Kostrzewska, 2020. "Pathogenic and Non-Pathogenic Fungal Communities in Wheat Grain as Influenced by Recycled Phosphorus Fertilizers: A Case Study," Agriculture, MDPI, vol. 10(6), pages 1-15, June.
    10. Zengliang Jiang & Lai-bao Zhuo & Yan He & Yuanqing Fu & Luqi Shen & Fengzhe Xu & Wanglong Gou & Zelei Miao & Menglei Shuai & Yuhui Liang & Congmei Xiao & Xinxiu Liang & Yunyi Tian & Jiali Wang & Jun T, 2022. "The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Feng Tong & Teng Wang & Na L. Gao & Ziying Liu & Kuiqing Cui & Yiqian Duan & Sicheng Wu & Yuhong Luo & Zhipeng Li & Chengjian Yang & Yixue Xu & Bo Lin & Liguo Yang & Alfredo Pauciullo & Deshun Shi & G, 2022. "The microbiome of the buffalo digestive tract," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Koji Hosomi & Mayu Saito & Jonguk Park & Haruka Murakami & Naoko Shibata & Masahiro Ando & Takahiro Nagatake & Kana Konishi & Harumi Ohno & Kumpei Tanisawa & Attayeb Mohsen & Yi-An Chen & Hitoshi Kawa, 2022. "Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Xiaoxiao Yuan & Ruirui Wang & Bing Han & ChengJun Sun & Ruimin Chen & Haiyan Wei & Linqi Chen & Hongwei Du & Guimei Li & Yu Yang & Xiaojuan Chen & Lanwei Cui & Zhenran Xu & Junfen Fu & Jin Wu & Wei Gu, 2022. "Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Dongyang Yang & Wei Xu, 2023. "Estimation of Mediation Effect on Zero-Inflated Microbiome Mediators," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    15. Gertrude Ecklu-Mensah & Candice Choo-Kang & Maria Gjerstad Maseng & Sonya Donato & Pascal Bovet & Bharathi Viswanathan & Kweku Bedu-Addo & Jacob Plange-Rhule & Prince Oti Boateng & Terrence E. Forrest, 2023. "Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Shuqi Qin & Dianye Zhang & Bin Wei & Yuanhe Yang, 2024. "Dual roles of microbes in mediating soil carbon dynamics in response to warming," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Aibo Gao & Junlei Su & Ruixin Liu & Shaoqian Zhao & Wen Li & Xiaoqiang Xu & Danjie Li & Juan Shi & Bin Gu & Juan Zhang & Qi Li & Xiaolin Wang & Yifei Zhang & Yu Xu & Jieli Lu & Guang Ning & Jie Hong &, 2021. "Sexual dimorphism in glucose metabolism is shaped by androgen-driven gut microbiome," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    18. Wodan Ling & Jiuyao Lu & Ni Zhao & Anju Lulla & Anna M. Plantinga & Weijia Fu & Angela Zhang & Hongjiao Liu & Hoseung Song & Zhigang Li & Jun Chen & Timothy W. Randolph & Wei Li A. Koay & James R. Whi, 2022. "Batch effects removal for microbiome data via conditional quantile regression," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Alessandra N. Bazzano & Kaitlin S. Potts & Lydia A. Bazzano & John B. Mason, 2017. "The Life Course Implications of Ready to Use Therapeutic Food for Children in Low-Income Countries," IJERPH, MDPI, vol. 14(4), pages 1-19, April.
    20. Eryun Zhang & Lihua Jin & Yangmeng Wang & Jui Tu & Ruirong Zheng & Lili Ding & Zhipeng Fang & Mingjie Fan & Ismail Al-Abdullah & Rama Natarajan & Ke Ma & Zhengtao Wang & Arthur D. Riggs & Sarah C. Shu, 2022. "Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:23:p:8877-:d:453266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.