IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v16y2024i3d10.1007_s12561-023-09397-3.html
   My bibliography  Save this article

Bayesian Modeling on Microbiome Data Analysis: Application to Subgingival Microbiome Study

Author

Listed:
  • Yeongjin Gwon

    (University of Nebraska Medical Center
    University of Nebraska)

  • Fang Yu

    (University of Nebraska Medical Center)

  • Jeffrey B. Payne

    (University of Nebraska Medical Center
    University of Nebraska Medical Center)

  • Ted R. Mikuls

    (University of Nebraska Medical Center
    Veterans Affairs Nebraska-Western Iowa Health Care System)

Abstract

The study of microbiome data has been widely used to investigate associations between the abundance of microbial taxa and human diseases. Identifying and understanding these relationships precisely gives the microbiome a key role in human health, disease status, and the development of new diagnostics and targeted therapeutics. Due to its unique features such as compositional data, excessive zero counts, overdispersion, and complexed structure between taxa, undertaking effective microbiome data analytics presents numerous obstacles. To quantify covariate-taxa effects on the subgingival microbiome study, we proposed a refined Bayesian zero-inflated negative binomial (ZINB) regression model with random subject effects. This proposed approach not only accommodates inflated zero counts and overdispersion similar to the existing ZINB model developed by Jiang et al. (Biostatistics 22(3):522–540, 2021), but also accounts for subject-level heterogeneity through the inclusion of random subject effects. In addition, an efficient Markov chain Monte Carlo (MCMC) sampling algorithm was developed for Bayesian computation. Overall effects of pre-selected group variables on predicted taxa abundance were estimated and tested under the proposed model. We conduct simulation studies and demonstrate that the proposed model outperforms the competing models in achieving a better power with controlling the type I error. The usefulness of the proposed model is applied to a real subgingival microbiome study.

Suggested Citation

  • Yeongjin Gwon & Fang Yu & Jeffrey B. Payne & Ted R. Mikuls, 2024. "Bayesian Modeling on Microbiome Data Analysis: Application to Subgingival Microbiome Study," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 556-577, December.
  • Handle: RePEc:spr:stabio:v:16:y:2024:i:3:d:10.1007_s12561-023-09397-3
    DOI: 10.1007/s12561-023-09397-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-023-09397-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-023-09397-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    2. Haitao Chai & Hongmei Jiang & Lu Lin & Lei Liu, 2018. "A marginalized two-part Beta regression model for microbiome compositional data," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-16, July.
    3. Peter J. Turnbaugh & Ruth E. Ley & Michael A. Mahowald & Vincent Magrini & Elaine R. Mardis & Jeffrey I. Gordon, 2006. "An obesity-associated gut microbiome with increased capacity for energy harvest," Nature, Nature, vol. 444(7122), pages 1027-1031, December.
    4. Junjie Qin & Yingrui Li & Zhiming Cai & Shenghui Li & Jianfeng Zhu & Fan Zhang & Suisha Liang & Wenwei Zhang & Yuanlin Guan & Dongqian Shen & Yangqing Peng & Dongya Zhang & Zhuye Jie & Wenxian Wu & Yo, 2012. "A metagenome-wide association study of gut microbiota in type 2 diabetes," Nature, Nature, vol. 490(7418), pages 55-60, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Tong & Teng Wang & Na L. Gao & Ziying Liu & Kuiqing Cui & Yiqian Duan & Sicheng Wu & Yuhong Luo & Zhipeng Li & Chengjian Yang & Yixue Xu & Bo Lin & Liguo Yang & Alfredo Pauciullo & Deshun Shi & G, 2022. "The microbiome of the buffalo digestive tract," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Koji Hosomi & Mayu Saito & Jonguk Park & Haruka Murakami & Naoko Shibata & Masahiro Ando & Takahiro Nagatake & Kana Konishi & Harumi Ohno & Kumpei Tanisawa & Attayeb Mohsen & Yi-An Chen & Hitoshi Kawa, 2022. "Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Dongyang Yang & Wei Xu, 2023. "Estimation of Mediation Effect on Zero-Inflated Microbiome Mediators," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    4. Gertrude Ecklu-Mensah & Candice Choo-Kang & Maria Gjerstad Maseng & Sonya Donato & Pascal Bovet & Bharathi Viswanathan & Kweku Bedu-Addo & Jacob Plange-Rhule & Prince Oti Boateng & Terrence E. Forrest, 2023. "Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Alessandra N. Bazzano & Kaitlin S. Potts & Lydia A. Bazzano & John B. Mason, 2017. "The Life Course Implications of Ready to Use Therapeutic Food for Children in Low-Income Countries," IJERPH, MDPI, vol. 14(4), pages 1-19, April.
    6. Eryun Zhang & Lihua Jin & Yangmeng Wang & Jui Tu & Ruirong Zheng & Lili Ding & Zhipeng Fang & Mingjie Fan & Ismail Al-Abdullah & Rama Natarajan & Ke Ma & Zhengtao Wang & Arthur D. Riggs & Sarah C. Shu, 2022. "Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    8. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    9. Doratha A Byrd & Jun Chen & Emily Vogtmann & Autumn Hullings & Se Jin Song & Amnon Amir & Muhammad G Kibriya & Habibul Ahsan & Yu Chen & Heidi Nelson & Rob Knight & Jianxin Shi & Nicholas Chia & Rashm, 2019. "Reproducibility, stability, and accuracy of microbial profiles by fecal sample collection method in three distinct populations," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.
    10. Tugba Akkaya Hocagil & Richard J. Cook & Sandra W. Jacobson & Joseph L. Jacobson & Louise M. Ryan, 2021. "Propensity score analysis for a semi‐continuous exposure variable: a study of gestational alcohol exposure and childhood cognition," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1390-1413, October.
    11. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    12. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    13. Kiran Konain & Sadia & Turfa Nadeem & Adeed Khan & Warda Iqbal & Arsalan & Amir Javed & Ruby Khan & Kainat Jamil & Kainat Jamil, 2018. "Importance of Probiotics in Gastrointestinal Tract," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(3), pages 128-143, March.
    14. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    15. Toryn L. J. Schafer & Christopher K. Wikle & Jay A. VonBank & Bart M. Ballard & Mitch D. Weegman, 2020. "A Bayesian Markov Model with Pólya-Gamma Sampling for Estimating Individual Behavior Transition Probabilities from Accelerometer Classifications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 365-382, September.
    16. Marjolein Heddes & Baraa Altaha & Yunhui Niu & Sandra Reitmeier & Karin Kleigrewe & Dirk Haller & Silke Kiessling, 2022. "The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    18. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    19. Tamás Krisztin & Philipp Piribauer, 2021. "A Bayesian spatial autoregressive logit model with an empirical application to European regional FDI flows," Empirical Economics, Springer, vol. 61(1), pages 231-257, July.
    20. Qi Zhang & Yihui Zhang & Yemao Xia, 2024. "Bayesian Feature Extraction for Two-Part Latent Variable Model with Polytomous Manifestations," Mathematics, MDPI, vol. 12(5), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:16:y:2024:i:3:d:10.1007_s12561-023-09397-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.