Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fanping Zhang & Huichao Dai & Deshan Tang, 2014. "A Conjunction Method of Wavelet Transform-Particle Swarm Optimization-Support Vector Machine for Streamflow Forecasting," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-10, May.
- Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
- Dieu Tien Bui & Ataollah Shirzadi & Ata Amini & Himan Shahabi & Nadhir Al-Ansari & Shahriar Hamidi & Sushant K. Singh & Binh Thai Pham & Baharin Bin Ahmad & Pezhman Taherei Ghazvinei, 2020. "A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chaoqing Huang & Chao He & Qian Wu & MinhThu Nguyen & Song Hong, 2023. "Classification of the Land Cover of a Megacity in ASEAN Using Two Band Combinations and Three Machine Learning Algorithms: A Case Study in Ho Chi Minh City," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
- Di Nunno, Fabio & Granata, Francesco, 2023. "Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms," Agricultural Water Management, Elsevier, vol. 280(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
- Fabio Di Nunno & Marco De Matteo & Giovanni Izzo & Francesco Granata, 2023. "A Combined Clustering and Trends Analysis Approach for Characterizing Reference Evapotranspiration in Veneto," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
- Bulent Haznedar & Huseyin Cagan Kilinc & Furkan Ozkan & Adem Yurtsever, 2023. "Streamflow forecasting using a hybrid LSTM-PSO approach: the case of Seyhan Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 681-701, May.
- Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
- Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
- Stephen Luo Sheng Yong & Jing Lin Ng & Yuk Feng Huang & Chun Kit Ang & Norashikin Ahmad Kamal & Majid Mirzaei & Ali Najah Ahmed, 2024. "Enhanced Daily Reference Evapotranspiration Estimation Using Optimized Hybrid Support Vector Regression Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4213-4241, September.
- Yehui Zhu & Liquan Xie & Tsung-Chow Su, 2020. "Scour Protection Effects of a Geotextile Mattress with Floating Plate on a Pipeline," Sustainability, MDPI, vol. 12(8), pages 1-13, April.
- Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
- Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
- Xike Zhang & Qiuwen Zhang & Gui Zhang & Zhiping Nie & Zifan Gui & Huafei Que, 2018. "A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition," IJERPH, MDPI, vol. 15(5), pages 1-23, May.
- Zhenhao Zhang & Guowei Lin & Xiaopeng Yang & Shilin Cui & Yan Li & Xueqing Shi & Zhongyu Han, 2023. "A Review of Vibration-Based Scour Diagnosis Methods for Bridge Foundation," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
- Di Nunno, Fabio & Granata, Francesco, 2023. "Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms," Agricultural Water Management, Elsevier, vol. 280(C).
- Karbasi, Masoud & Jamei, Mehdi & Ali, Mumtaz & Malik, Anurag & Chu, Xuefeng & Farooque, Aitazaz Ahsan & Yaseen, Zaher Mundher, 2023. "Development of an enhanced bidirectional recurrent neural network combined with time-varying filter-based empirical mode decomposition to forecast weekly reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 290(C).
- Viet-Ha Nhu & Ayub Mohammadi & Himan Shahabi & Baharin Bin Ahmad & Nadhir Al-Ansari & Ataollah Shirzadi & John J. Clague & Abolfazl Jaafari & Wei Chen & Hoang Nguyen, 2020. "Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment," IJERPH, MDPI, vol. 17(14), pages 1-23, July.
- Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2022. "Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes," Agricultural Water Management, Elsevier, vol. 261(C).
- Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
- Yan Guo & Wei Tang & Guanghua Hou & Fei Pan & Yubo Wang & Wei Wang, 2021. "Research on Precipitation Forecast Based on LSTM–CP Combined Model," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
More about this item
Keywords
precipitation forecasting; machine learning; M5P; SVR; hybrid model; Northern Bangladesh; tropical monsoon-climate;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2663-:d:757921. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.