IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p904-d1419754.html
   My bibliography  Save this article

Characterization and Geomorphic Change Detection of Landslides Using UAV Multi-Temporal Imagery in the Himalayas, Pakistan

Author

Listed:
  • Naseem Ahmad

    (National Centre of Excellence in Geology, University of Peshawar, Peshawar 25000, Pakistan
    GIS and Space Applications in Geosciences (G-SAG), National Centre of GIS and Space Application (NCGSA), University of Peshawar, Peshawar 25000, Pakistan)

  • Muhammad Shafique

    (National Centre of Excellence in Geology, University of Peshawar, Peshawar 25000, Pakistan
    GIS and Space Applications in Geosciences (G-SAG), National Centre of GIS and Space Application (NCGSA), University of Peshawar, Peshawar 25000, Pakistan)

  • Mian Luqman Hussain

    (National Centre of Excellence in Geology, University of Peshawar, Peshawar 25000, Pakistan
    GIS and Space Applications in Geosciences (G-SAG), National Centre of GIS and Space Application (NCGSA), University of Peshawar, Peshawar 25000, Pakistan)

  • Fakhrul Islam

    (Department of Geology, Khushal Khan Khattak University, Karak 27200, Pakistan)

  • Aqil Tariq

    (Department of Wildlife, Fisheries and Aquaculture, College of Forest Resource, Mississippi State University, Mississippi State, MS 39762-9690, USA)

  • Walid Soufan

    (Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

Abstract

Multi-temporal unmanned aerial vehicle (UAV) imagery and topographic data were used to characterize and evaluate the geomorphic changes of two active landslides (Nara and Nokot) in Pakistan. Ortho-mosaic images and field-based investigations were utilized to assess the geomorphological changes, including the Topographic Wetness Index, slope, and displacement. Volumetric changes in specific areas of the landslides were measured using the Geomorphic Change Detection (GCD) tool. The depletion zone of the Nara landslide was characterized by failures of the main scarps, resulting in landslides causing erosional displacements exceeding 201.6 m. In contrast, for the Nokot landslide, the erosional displacement ranged from −201.05 m to −64.98 m. The transition zone of the slide experienced many slow earth flows that re-mobilized displaced material from the middle portion of the landslide, ultimately reaching the accumulation zone. Volumetric analysis of the Nara landslide indicated overall erosion of landslide material with a volume of approximately 4,565,274.96 m 3 , while the accumulated and surface-raising material volume was approximately 185,544.53 m 3 . Similarly, for the Nokot landslide, the overall erosion of landslide material was estimated to be 6,486,121.30 m 3 , with an accumulated volume and surface-raising material of 117.98 m 3 . This study has demonstrated the efficacy of the GCD tool as a robust and repeatable method for mapping and monitoring landslide dynamics with UAVs over a relatively long time series.

Suggested Citation

  • Naseem Ahmad & Muhammad Shafique & Mian Luqman Hussain & Fakhrul Islam & Aqil Tariq & Walid Soufan, 2024. "Characterization and Geomorphic Change Detection of Landslides Using UAV Multi-Temporal Imagery in the Himalayas, Pakistan," Land, MDPI, vol. 13(7), pages 1-28, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:904-:d:1419754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/904/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/904/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haoyuan Hong & Himan Shahabi & Ataollah Shirzadi & Wei Chen & Kamran Chapi & Baharin Bin Ahmad & Majid Shadman Roodposhti & Arastoo Yari Hesar & Yingying Tian & Dieu Tien Bui, 2019. "Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 173-212, March.
    2. Suhua Zhou & Shuaikang Zhou & Xin Tan, 2020. "Nationwide Susceptibility Mapping of Landslides in Kenya Using the Fuzzy Analytic Hierarchy Process Model," Land, MDPI, vol. 9(12), pages 1-22, December.
    3. Lirong Yin & Lei Wang & Jianqiang Li & Siyu Lu & Jiawei Tian & Zhengtong Yin & Shan Liu & Wenfeng Zheng, 2023. "YOLOV4_CSPBi: Enhanced Land Target Detection Model," Land, MDPI, vol. 12(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    2. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    3. Jiangping Gao & Xiangyang Shi & Linghui Li & Ziqiang Zhou & Junfeng Wang, 2022. "Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China," Sustainability, MDPI, vol. 14(24), pages 1-26, December.
    4. Enrico Miccadei & Cristiano Carabella & Giorgio Paglia, 2022. "Landslide Hazard and Environment Risk Assessment," Land, MDPI, vol. 11(3), pages 1-5, March.
    5. Vahed Ghiasi & Seyed Amir Reza Ghasemi & Mahyar Yousefi, 2021. "Landslide susceptibility mapping through continuous fuzzification and geometric average multi-criteria decision-making approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 795-808, May.
    6. Mojgan Bordbar & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan & Barnali Dixon & Sina Paryani, 2022. "Improving the coastal aquifers’ vulnerability assessment using SCMAI ensemble of three machine learning approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1799-1820, February.
    7. Ruiling Sun & Ge Gao & Zaiwu Gong & Jie Wu, 2020. "A review of risk analysis methods for natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 571-593, January.
    8. Prosenjit Barman & Sheikh Mustak & Monika Kuffer & Sudhir Kumar Singh, 2023. "Transfer-Ensemble Learning: A Novel Approach for Mapping Urban Land Use/Cover of the Indian Metropolitans," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    9. Lamek Nahayo & Cui Peng & Yu Lei & Rongzhi Tan, 2023. "Spatial understanding of historical and future landslide variation in Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 613-641, October.
    10. Cahio Guimarães Seabra Eiras & Juliana Ribeiro Gonçalves de Souza & Renata Delicio Andrade de Freitas & César Falcão Barella & Tiago Martins Pereira, 2021. "Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1427-1442, June.
    11. Muhammad Rashid & Saif Haider & Muhammad Umer Masood & Chaitanya B. Pande & Abebe Debele Tolche & Fahad Alshehri & Romulus Costache & Ismail Elkhrachy, 2023. "Sustainable Water Management for Small Farmers with Center-Pivot Irrigation: A Hydraulic and Structural Design Perspective," Sustainability, MDPI, vol. 15(23), pages 1-29, November.
    12. Viet-Ha Nhu & Ayub Mohammadi & Himan Shahabi & Baharin Bin Ahmad & Nadhir Al-Ansari & Ataollah Shirzadi & John J. Clague & Abolfazl Jaafari & Wei Chen & Hoang Nguyen, 2020. "Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment," IJERPH, MDPI, vol. 17(14), pages 1-23, July.
    13. Elsadek, Elsayed Ahmed & Zhang, Ke & Hamoud, Yousef Alhaj & Mousa, Ahmed & Awad, Ahmed & Abdallah, Mohammed & Shaghaleh, Hiba & Hamad, Amar Ali Adam & Jamil, Muhammad Tahir & Elbeltagi, Ahmed, 2024. "Impacts of climate change on rice yields in the Nile River Delta of Egypt: A large-scale projection analysis based on CMIP6," Agricultural Water Management, Elsevier, vol. 292(C).
    14. Samuel Bimenyimana & Chen Wang & Godwin Norense Osarumwense Asemota & Jeanne Paula Ihirwe & Mucyo Ndera Tuyizere & Fidele Mwizerwa & Yiyi Mo & Martine Abiyese, 2024. "Geospatial Analysis of Wind Energy Siting Suitability in the East African Community," Sustainability, MDPI, vol. 16(4), pages 1-32, February.
    15. Xiaojie Yang & Zhenli Hao & Keyuan Liu & Zhigang Tao & Guangcheng Shi, 2023. "An Improved Unascertained Measure-Set Pair Analysis Model Based on Fuzzy AHP and Entropy for Landslide Susceptibility Zonation Mapping," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    16. Farzam Tavankar & Rodolfo Picchio & Mehrdad Nikooy & Meghdad Jourgholami & Ramin Naghdi & Francesco Latterini & Rachele Venanzi, 2021. "Soil Natural Recovery Process and Fagus orientalis Lipsky Seedling Growth after Timber Extraction by Wheeled Skidder," Land, MDPI, vol. 10(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:904-:d:1419754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.