IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i3p1217-1232d23930.html
   My bibliography  Save this article

The Influence of Allocation on the Carbon Footprint of Electricity Production from Waste Gas, a Case Study for Blast Furnace Gas

Author

Listed:
  • Maarten Messagie

    (Mobility and Automotive Technology Research Group (MOBI), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

  • Fayçal Boureima

    (Mobility and Automotive Technology Research Group (MOBI), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

  • Jan Mertens

    (Laborelec, Rodestraat 125, Linkebeek 1630, Belgium)

  • Javier Sanfelix

    (Mobility and Automotive Technology Research Group (MOBI), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

  • Cathy Macharis

    (Mobility and Automotive Technology Research Group (MOBI), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

  • Joeri Van Mierlo

    (Mobility and Automotive Technology Research Group (MOBI), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

Abstract

Producing electricity from waste gas is an after treatment for waste gas while recovering the energy content. This paper addresses the methodology to calculate the effect that waste gas energy recovery has on lowering the impact of climate change. Greenhouse gases are emitted while burning the waste gas. However, a thorough study should include the production of the feedstock as well as the production of the infrastructure. A framework is developed to calculate the environmental impact of electricity production from waste gas with a life cycle approach. The present paper has a twofold purpose: to assess the climate change impact of generating electricity with blast furnace gas (BFG) as a waste gas from the steel industry; and to establish a sensitivity assessment of the environmental implications of different allocation rules.

Suggested Citation

  • Maarten Messagie & Fayçal Boureima & Jan Mertens & Javier Sanfelix & Cathy Macharis & Joeri Van Mierlo, 2013. "The Influence of Allocation on the Carbon Footprint of Electricity Production from Waste Gas, a Case Study for Blast Furnace Gas," Energies, MDPI, vol. 6(3), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1217-1232:d:23930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/3/1217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/3/1217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su Shiung Lam & Howard A. Chase, 2012. "A Review on Waste to Energy Processes Using Microwave Pyrolysis," Energies, MDPI, vol. 5(10), pages 1-24, October.
    2. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    3. Malça, João & Freire, Fausto, 2006. "Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation," Energy, Elsevier, vol. 31(15), pages 3362-3380.
    4. Antonio Messineo & Gabriele Freni & Roberto Volpe, 2012. "Collection of Thermal Energy Available from a Biogas Plant for Leachate Treatment in an Urban Landfill: A Sicilian Case Study," Energies, MDPI, vol. 5(10), pages 1-15, September.
    5. Wen-Tien Tsai, 2012. "An Analysis of the Use of Biosludge as an Energy Source and Its Environmental Benefits in Taiwan," Energies, MDPI, vol. 5(8), pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Li & Lizhu Chen & Xuemei Ding, 2019. "Allocation Methodology of Process-Level Carbon Footprint Calculation in Textile and Apparel Products," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    2. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    2. Cherubini, Francesco & Strømman, Anders Hammer & Ulgiati, Sergio, 2011. "Influence of allocation methods on the environmental performance of biorefinery products—A case study," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1070-1077.
    3. Yang, Q. & Chen, G.Q., 2012. "Nonrenewable energy cost of corn-ethanol in China," Energy Policy, Elsevier, vol. 41(C), pages 340-347.
    4. Khoshnevisan, Benyamin & Shafiei, Marzieh & Rajaeifar, Mohammad Ali & Tabatabaei, Meisam, 2016. "Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach," Energy, Elsevier, vol. 114(C), pages 935-950.
    5. Velásquez-Arredondo, H.I. & Ruiz-Colorado, A.A. & De Oliveira, S., 2010. "Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis," Energy, Elsevier, vol. 35(7), pages 3081-3087.
    6. Šantek, Božidar & Gwehenberger, Gernot & Šantek, Mirela Ivančić & Narodoslawsky, Michael & Horvat, Predrag, 2010. "Evaluation of energy demand and the sustainability of different bioethanol production processes from sugar beet," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 872-877.
    7. Beghin, John C. & Jensen, Helen H., 2008. "Farm policies and added sugars in US diets," Food Policy, Elsevier, vol. 33(6), pages 480-488, December.
    8. Burnes, Ellen & Wichelns, Dennis & Hagen, John W., 2005. "Economic and policy implications of public support for ethanol production in California's San Joaquin Valley," Energy Policy, Elsevier, vol. 33(9), pages 1155-1167, June.
    9. Santhoshkumar, A. & Ramanathan, Anand, 2020. "Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine," Energy, Elsevier, vol. 197(C).
    10. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    11. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    12. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    13. Fiyinfoluwa Joan Medaiyese & Hamid Reza Nasriani & Leila Khajenoori & Khalid Khan & Ali Badiei, 2024. "From Waste to Energy: Enhancing Fuel and Hydrogen Production through Pyrolysis and In-Line Reforming of Plastic Wastes," Sustainability, MDPI, vol. 16(12), pages 1-31, June.
    14. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    15. Castoldi, Nicola & Bechini, Luca & Ferrante, Antonio, 2011. "Fossil energy usage for the production of baby leaves," Energy, Elsevier, vol. 36(1), pages 86-93.
    16. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.
    17. Puca, Antonio & Carrano, Marco & Liu, Gengyuan & Musella, Dimitri & Ripa, Maddalena & Viglia, Silvio & Ulgiati, Sergio, 2017. "Energy and eMergy assessment of the production and operation of a personal computer," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 124-136.
    18. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    20. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1217-1232:d:23930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.