IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i2p69-d62828.html
   My bibliography  Save this article

An Innovative Control Strategy to Improve the Fault Ride-Through Capability of DFIGs Based on Wind Energy Conversion Systems

Author

Listed:
  • Vandai Le

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    Faculty of Electrical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam)

  • Xinran Li

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Yong Li

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Tran Le Thang Dong

    (Duy Tan University, Da Nang 550000, Vietnam)

  • Caoquyen Le

    (Power Engineering Consulting Joint Stock Company 4, Nha Trang 650000, Vietnam)

Abstract

An innovative control strategy is proposed for enhancing the low voltage ride-through (LVRT) capability of a doubly fed induction generator based on wind energy conversion systems (DFIG-WECS). Within the proposed control method, the current control loops of the rotor side converter (RSC) are developed based on passivity theory. The control scheme for the grid side converter (GSC) is designed based on a two-term approach to keep the DC-link voltage close to a given value. The first term based on the maximal voltage of GSC is introduced in the GSC control loops as a reference reactive current. The second one reflecting the instantaneous unbalanced power flow between the RSC and GSC is also introduced in the GSC control loops as a disturbance considering the instantaneous power of the grid filter to compensate the instantaneous rotor power. The effectiveness of the proposed control strategy is verified via time domain simulation of a 2.0 MW-575 V DFIG-WECS using PSCAD/EMTP. Simulation results show that the control of the DFIG with the proposed approach can improve the LVRT capability better than with the conventional one.

Suggested Citation

  • Vandai Le & Xinran Li & Yong Li & Tran Le Thang Dong & Caoquyen Le, 2016. "An Innovative Control Strategy to Improve the Fault Ride-Through Capability of DFIGs Based on Wind Energy Conversion Systems," Energies, MDPI, vol. 9(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:69-:d:62828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/2/69/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/2/69/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Yao & Qing Li & Zhe Chen & Aolin Liu, 2013. "Coordinated Control of a DFIG-Based Wind-Power Generation System with SGSC under Distorted Grid Voltage Conditions," Energies, MDPI, vol. 6(5), pages 1-21, May.
    2. Yun Wang & Qiuwei Wu & Honghua Xu & Qinglai Guo & Hongbin Sun, 2014. "Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through," Energies, MDPI, vol. 7(7), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoliang Yang & Guorong Liu & Anping Li & Le Van Dai, 2017. "A Predictive Power Control Strategy for DFIGs Based on a Wind Energy Converter System," Energies, MDPI, vol. 10(8), pages 1-24, July.
    2. Xunjun Chen & Zhigang Liu, 2019. "Impedance Modeling and Stability Analysis of the Converters in a Double-Fed Induction Generator (DFIG)-Based System," Energies, MDPI, vol. 12(13), pages 1-23, June.
    3. P. Jayanthi & D. Devaraj, 2022. "LVRT capability enhancement in the grid-connected DFIG-driven WECS using adaptive hysteresis current controller," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7593-7621, June.
    4. Jing Liu & Zhigang Liu, 2017. "Harmonic Analyzing of the Double PWM Converter in DFIG Based on Mathematical Model," Energies, MDPI, vol. 10(12), pages 1-19, December.
    5. Lei Chen & Xiude Tu & Hongkun Chen & Jun Yang & Yayi Wu & Xin Shu & Li Ren, 2016. "Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads," Energies, MDPI, vol. 9(10), pages 1-21, September.
    6. Md. Rashidul Islam & Md. Najmul Huda & Jakir Hasan & Mohammad Ashraf Hossain Sadi & Ahmed AbuHussein & Tushar Kanti Roy & Md. Apel Mahmud, 2020. "Fault Ride Through Capability Improvement of DFIG Based Wind Farm Using Nonlinear Controller Based Bridge-Type Flux Coupling Non-Superconducting Fault Current Limiter," Energies, MDPI, vol. 13(7), pages 1-25, April.
    7. Hyeong-Jin Lee & Jin-Su Kim & Jae-Chul Kim, 2018. "Parameter Estimation of Chopper Resistor in Medium-Voltage-Direct-Current during Grid Fault Ride through," Energies, MDPI, vol. 11(12), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Deng & Zhenghao Qi & Nan Xia & Tong Gao & Yang Zhang & Jiandong Duan, 2022. "Control Strategy and Parameter Optimization Based on Grid Side Current Dynamic Change Rate for Doubly-Fed Wind Turbine High Voltage Ride Through," Energies, MDPI, vol. 15(21), pages 1-19, October.
    2. Rita M. Monteiro Pereira & Adelino J. C. Pereira & Carlos Machado Ferreira & Fernando P. Maciel Barbosa, 2018. "Influence of Crowbar and Chopper Protection on DFIG during Low Voltage Ride Through," Energies, MDPI, vol. 11(4), pages 1-13, April.
    3. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    4. Dahai Zhang & Xiandong Ma & Yulin Si & Can Huang & Bin Huang & Wei Li, 2017. "Effect of Doubly Fed Induction GeneratorTidal Current Turbines on Stability of a Distribution Grid under Unbalanced Voltage Conditions," Energies, MDPI, vol. 10(2), pages 1-14, February.
    5. Zhenxing Li & Yuting Fu & Ling Wang & Lu Wang & Wenliang Bao & Yanxia Chen, 2019. "The Analysis and Solution of Current Differential Protection Maloperation for Transmission Line with High Series Compensation Degree," Energies, MDPI, vol. 12(9), pages 1-22, April.
    6. Jaime Rodríguez Arribas & Adrián Fernández Rodríguez & Ángel Hermoso Muñoz & Carlos Veganzones Nicolás, 2014. "Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars," Energies, MDPI, vol. 7(2), pages 1-22, January.
    7. Jing Liu & Zhigang Liu, 2017. "Harmonic Analyzing of the Double PWM Converter in DFIG Based on Mathematical Model," Energies, MDPI, vol. 10(12), pages 1-19, December.
    8. Zhen Xie & Lifan Niu & Xing Zhang, 2018. "An Enhanced Control Strategy for Doubly-Fed Induction Generators Based on a Virtual Harmonic Resistor and Capacitor under Nonlinear Load Conditions," Energies, MDPI, vol. 11(10), pages 1-18, October.
    9. Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Emilio Gómez-Lázaro & Jens Fortmann, 2016. "Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27," Energies, MDPI, vol. 9(12), pages 1-24, December.
    10. Oscar Barambones & Jose A. Cortajarena & Patxi Alkorta & Jose M. Gonzalez De Durana, 2014. "A Real-Time Sliding Mode Control for a Wind Energy System Based on a Doubly Fed Induction Generator," Energies, MDPI, vol. 7(10), pages 1-22, October.
    11. Yanjian Peng & Yong Li & Zhisheng Xu & Ming Wen & Longfu Luo & Yijia Cao & Zbigniew Leonowicz, 2016. "Power Quality Improvement and LVRT Capability Enhancement of Wind Farms by Means of an Inductive Filtering Method," Energies, MDPI, vol. 9(4), pages 1-18, April.
    12. Yangwu Shen & Mingjian Cui & Qin Wang & Feifan Shen & Bin Zhang & Liqing Liang, 2017. "Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags," Energies, MDPI, vol. 10(6), pages 1-20, June.
    13. Fan Xiao & Zhe Zhang & Xianggen Yin, 2015. "Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions," Energies, MDPI, vol. 8(10), pages 1-22, September.
    14. Raju, S.Krishnama & Pillai, G.N., 2016. "Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators," Renewable Energy, Elsevier, vol. 88(C), pages 40-50.
    15. Kai Liao & Yao Wang, 2017. "A Comparison between Voltage and Reactive Power Feedback Schemes of DFIGs for Inter-Area Oscillation Damping Control," Energies, MDPI, vol. 10(8), pages 1-17, August.
    16. Moonsung Bae & Hwanik Lee & Byongjun Lee, 2017. "An Approach to Improve the Penetration of Sustainable Energy Using Optimal Transformer Tap Control," Sustainability, MDPI, vol. 9(9), pages 1-15, August.
    17. Fenglin Miao & Hongsheng Shi & Xiaoqing Zhang, 2015. "Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips," Energies, MDPI, vol. 8(10), pages 1-18, October.
    18. Dan Wang & Chongru Liu & Gengyin Li, 2016. "An Optimal Integrated Control Scheme for Permanent Magnet Synchronous Generator-Based Wind Turbines under Asymmetrical Grid Fault Conditions," Energies, MDPI, vol. 9(4), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:69-:d:62828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.