Control Strategy and Parameter Optimization Based on Grid Side Current Dynamic Change Rate for Doubly-Fed Wind Turbine High Voltage Ride Through
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yun Wang & Qiuwei Wu & Honghua Xu & Qinglai Guo & Hongbin Sun, 2014. "Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through," Energies, MDPI, vol. 7(7), pages 1-17, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pablo L. Tabosa da Silva & Pedro A. Carvalho Rosas & José F. C. Castro & Davidson da Costa Marques & Ronaldo R. B. Aquino & Guilherme F. Rissi & Rafael C. Neto & Douglas C. P. Barbosa, 2023. "Power Smoothing Strategy for Wind Generation Based on Fuzzy Control Strategy with Battery Energy Storage System," Energies, MDPI, vol. 16(16), pages 1-16, August.
- Ahmed G. Abo-Khalil & Mohammad Alobaid, 2023. "Optimized Control for PMSG Wind Turbine Systems under Unbalanced and Distorted Grid Voltage Scenarios," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rita M. Monteiro Pereira & Adelino J. C. Pereira & Carlos Machado Ferreira & Fernando P. Maciel Barbosa, 2018. "Influence of Crowbar and Chopper Protection on DFIG during Low Voltage Ride Through," Energies, MDPI, vol. 11(4), pages 1-13, April.
- Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Emilio Gómez-Lázaro & Jens Fortmann, 2016. "Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27," Energies, MDPI, vol. 9(12), pages 1-24, December.
- Oscar Barambones & Jose A. Cortajarena & Patxi Alkorta & Jose M. Gonzalez De Durana, 2014. "A Real-Time Sliding Mode Control for a Wind Energy System Based on a Doubly Fed Induction Generator," Energies, MDPI, vol. 7(10), pages 1-22, October.
- Vandai Le & Xinran Li & Yong Li & Tran Le Thang Dong & Caoquyen Le, 2016. "An Innovative Control Strategy to Improve the Fault Ride-Through Capability of DFIGs Based on Wind Energy Conversion Systems," Energies, MDPI, vol. 9(2), pages 1-23, January.
- Fan Xiao & Zhe Zhang & Xianggen Yin, 2015. "Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions," Energies, MDPI, vol. 8(10), pages 1-22, September.
- Fenglin Miao & Hongsheng Shi & Xiaoqing Zhang, 2015. "Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips," Energies, MDPI, vol. 8(10), pages 1-18, October.
More about this item
Keywords
doubly-fed induction wind turbines; current change rate; grid side current; high voltage ride through; grey wolf algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7977-:d:954869. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.