IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i4p302-d68576.html
   My bibliography  Save this article

Power Quality Improvement and LVRT Capability Enhancement of Wind Farms by Means of an Inductive Filtering Method

Author

Listed:
  • Yanjian Peng

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Yong Li

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Zhisheng Xu

    (Hunan Electrical Power Corporation Economical & Technical Research, Changsha 410004, China)

  • Ming Wen

    (Hunan Electrical Power Corporation Economical & Technical Research, Changsha 410004, China)

  • Longfu Luo

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Yijia Cao

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Zbigniew Leonowicz

    (Department of Electrical Engineering, Wroclaw University of Technology, Wroclaw 50370, Poland)

Abstract

Unlike the traditional method for power quality improvement and low-voltage ride through (LVRT) capability enhancement of wind farms, this paper proposes a new wind power integrated system by means of an inductive filtering method, especially if it contains a grid-connected transformer, a static synchronous compensator (STATCOM) and fully-tuned (FT) branches. First, the main circuit topology of the new wind power integrated system is presented. Then, the mathematical model is established to reveal the mechanism of harmonic suppression and the reactive compensation of the proposed wind power integrated system, and then the realization conditions of the inductive filtering method is obtained. Further, the control strategy of STATCOM is introduced. Based on the measured data for a real wind farm, the simulation studies are carried out to illustrate the performance of the proposed new wind power integrated system. The results indicate that the new system can not only enhance the LVRT capability of wind farms, but also prevent harmonic components flowing into the primary (grid) winding of the grid-connected transformer. Moreover, since the new method can compensate for reactive power in a wind farm, the power factor at the grid side can be improved effectively.

Suggested Citation

  • Yanjian Peng & Yong Li & Zhisheng Xu & Ming Wen & Longfu Luo & Yijia Cao & Zbigniew Leonowicz, 2016. "Power Quality Improvement and LVRT Capability Enhancement of Wind Farms by Means of an Inductive Filtering Method," Energies, MDPI, vol. 9(4), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:4:p:302-:d:68576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/4/302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/4/302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jen-Hao Teng & Rong-Ceng Leou & Chuo-Yean Chang & Shun-Yu Chan, 2013. "Harmonic Current Predictors for Wind Turbines," Energies, MDPI, vol. 6(3), pages 1-15, March.
    2. Jun Yao & Qing Li & Zhe Chen & Aolin Liu, 2013. "Coordinated Control of a DFIG-Based Wind-Power Generation System with SGSC under Distorted Grid Voltage Conditions," Energies, MDPI, vol. 6(5), pages 1-21, May.
    3. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    4. Zhong Zheng & Geng Yang & Hua Geng, 2013. "Coordinated Control of a Doubly-Fed Induction Generator-Based Wind Farm and a Static Synchronous Compensator for Low Voltage Ride-through Grid Code Compliance during Asymmetrical Grid Faults," Energies, MDPI, vol. 6(9), pages 1-22, September.
    5. Jingjing Bai & Wei Gu & Xiaodong Yuan & Qun Li & Feng Xue & Xuchong Wang, 2015. "Power Quality Prediction, Early Warning, and Control for Points of Common Coupling with Wind Farms," Energies, MDPI, vol. 8(9), pages 1-18, August.
    6. Pedro Roncero-Sànchez & Enrique Acha, 2014. "Design of a Control Scheme for Distribution Static Synchronous Compensators with Power-Quality Improvement Capability," Energies, MDPI, vol. 7(4), pages 1-22, April.
    7. Andrés Felipe Obando-Montaño & Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado, 2014. "A STATCOM with Supercapacitors for Low-Voltage Ride-Through in Fixed-Speed Wind Turbines," Energies, MDPI, vol. 7(9), pages 1-31, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Abdelrahem & Ralph Kennel, 2016. "Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Xie & Lifan Niu & Xing Zhang, 2018. "An Enhanced Control Strategy for Doubly-Fed Induction Generators Based on a Virtual Harmonic Resistor and Capacitor under Nonlinear Load Conditions," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Hui Huang & Chengxiong Mao & Jiming Lu & Dan Wang, 2014. "Electronic Power Transformer Control Strategy in Wind Energy Conversion Systems for Low Voltage Ride-through Capability Enhancement of Directly Driven Wind Turbines with Permanent Magnet Synchronous G," Energies, MDPI, vol. 7(11), pages 1-18, November.
    3. Adrian Pană & Alexandru Băloi & Florin Molnar-Matei, 2018. "Iterative Method for Determining the Values of the Susceptances of a Balancing Capacitive Compensator," Energies, MDPI, vol. 11(10), pages 1-18, October.
    4. Wei Luo & Jianguo Jiang & He Liu, 2017. "Frequency-Adaptive Modified Comb-Filter-Based Phase-Locked Loop for a Doubly-Fed Adjustable-Speed Pumped-Storage Hydropower Plant under Distorted Grid Conditions," Energies, MDPI, vol. 10(6), pages 1-13, May.
    5. Aiguo Tan & Xiangning Lin & Jinwen Sun & Ran Lyu & Zhengtian Li & Long Peng & Muhammad Shoaib Khalid, 2016. "A Novel DFIG Damping Control for Power System with High Wind Power Penetration," Energies, MDPI, vol. 9(7), pages 1-15, July.
    6. Maciej Kuboń & Zbigniew Skibko & Sylwester Tabor & Urszula Malaga-Toboła & Andrzej Borusiewicz & Wacław Romaniuk & Janusz Zarajczyk & Pavel Neuberger, 2023. "Analysis of Voltage Distortions in the Power Grid Arising from Agricultural Biogas Plant Operation," Energies, MDPI, vol. 16(17), pages 1-21, August.
    7. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    8. Jura Arkhangelski & Pedro Roncero-Sánchez & Mahamadou Abdou-Tankari & Javier Vázquez & Gilles Lefebvre, 2019. "Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case," Energies, MDPI, vol. 12(14), pages 1-23, July.
    9. Alexandre Serrano-Fontova & Pablo Casals Torrens & Ricard Bosch, 2019. "Power Quality Disturbances Assessment during Unintentional Islanding Scenarios. A Contribution to Voltage Sag Studies," Energies, MDPI, vol. 12(16), pages 1-21, August.
    10. Efthimiou, G.C. & Kumar, P. & Giannissi, S.G. & Feiz, A.A. & Andronopoulos, S., 2019. "Prediction of the wind speed probabilities in the atmospheric surface layer," Renewable Energy, Elsevier, vol. 132(C), pages 921-930.
    11. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    12. Pedro Roncero-Sánchez & Alfonso Parreño Torres & Javier Vázquez & Francisco Javier López-Alcolea & Emilio J. Molina-Martínez & Felix Garcia-Torres, 2021. "Multiterminal HVDC System with Power Quality Enhancement," Energies, MDPI, vol. 14(5), pages 1-22, February.
    13. Dahai Zhang & Xiandong Ma & Yulin Si & Can Huang & Bin Huang & Wei Li, 2017. "Effect of Doubly Fed Induction GeneratorTidal Current Turbines on Stability of a Distribution Grid under Unbalanced Voltage Conditions," Energies, MDPI, vol. 10(2), pages 1-14, February.
    14. Jian Yang & Yu Liu & Shangguang Jiang & Yazhou Luo & Nianzhang Liu & Deping Ke, 2022. "A Method of Probability Distribution Modeling of Multi-Dimensional Conditions for Wind Power Forecast Error Based on MNSGA-II-Kmeans," Energies, MDPI, vol. 15(7), pages 1-21, March.
    15. Kuang-Hsiung Tan & Faa-Jeng Lin & Chao-Yang Tsai & Yung-Ruei Chang, 2018. "A Distribution Static Compensator Using a CFNN-AMF Controller for Power Quality Improvement and DC-Link Voltage Regulation," Energies, MDPI, vol. 11(8), pages 1-17, August.
    16. Adrian Pană & Alexandru Băloi & Florin Molnar-Matei, 2018. "From the Balancing Reactive Compensator to the Balancing Capacitive Compensator," Energies, MDPI, vol. 11(8), pages 1-24, July.
    17. Zhenxing Li & Yuting Fu & Ling Wang & Lu Wang & Wenliang Bao & Yanxia Chen, 2019. "The Analysis and Solution of Current Differential Protection Maloperation for Transmission Line with High Series Compensation Degree," Energies, MDPI, vol. 12(9), pages 1-22, April.
    18. Jaime Rodríguez Arribas & Adrián Fernández Rodríguez & Ángel Hermoso Muñoz & Carlos Veganzones Nicolás, 2014. "Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars," Energies, MDPI, vol. 7(2), pages 1-22, January.
    19. Jiawei Li & Jun Yao & Xin Zeng & Ruikuo Liu & Depeng Xu & Caisheng Wang, 2017. "Coordinated Control Strategy for a Hybrid Wind Farm with DFIG and PMSG under Symmetrical Grid Faults," Energies, MDPI, vol. 10(5), pages 1-21, May.
    20. Krishnamoorthy R & Udhayakumar K & Kannadasan Raju & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "An Assessment of Onshore and Offshore Wind Energy Potential in India Using Moth Flame Optimization," Energies, MDPI, vol. 13(12), pages 1-41, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:4:p:302-:d:68576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.