IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i12p1048-d85068.html
   My bibliography  Save this article

Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27

Author

Listed:
  • Andrés Honrubia-Escribano

    (Renewable Energy Research Institute and DIEEAC-EDII-AB, Universidad de Castilla-La Mancha, 02071 Albacete, Spain)

  • Francisco Jiménez-Buendía

    (Gamesa Innovation and Technology, 31621 Sarriguren, Spain)

  • Emilio Gómez-Lázaro

    (Renewable Energy Research Institute and DIEEAC-EDII-AB, Universidad de Castilla-La Mancha, 02071 Albacete, Spain)

  • Jens Fortmann

    (Hochschule für Technik und Wirtschaft (HTW) Berlin—University of Applied Sciences, 12459 Berlin, Germany)

Abstract

Considerable efforts are currently being made by several international working groups focused on the development of generic, also known as simplified or standard, wind turbine models for power system stability studies. In this sense, the first edition of International Electrotechnical Commission (IEC) 61400-27-1, which defines generic dynamic simulation models for wind turbines, was published in February 2015. Nevertheless, the correlations of the IEC generic models with respect to specific wind turbine manufacturer models are required by the wind power industry to validate the accuracy and corresponding usability of these standard models. The present work conducts the validation of the two topologies of variable speed wind turbines that present not only the largest market share, but also the most technological advances. Specifically, the doubly-fed induction machine and the full-scale converter (FSC) topology are modeled based on the IEC 61400-27-1 guidelines. The models are simulated for a wide range of voltage dips with different characteristics and wind turbine operating conditions. The simulated response of the IEC generic model is compared to the corresponding simplified model of a wind turbine manufacturer, showing a good correlation in most cases. Validation error sources are analyzed in detail, as well. In addition, this paper reviews in detail the previous work done in this field. Results suggest that wind turbine manufacturers are able to adjust the IEC generic models to represent the behavior of their specific wind turbines for power system stability analysis.

Suggested Citation

  • Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Emilio Gómez-Lázaro & Jens Fortmann, 2016. "Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27," Energies, MDPI, vol. 9(12), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1048-:d:85068
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/12/1048/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/12/1048/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maurício B. C. Salles & Kay Hameyer & José R. Cardoso & Ahda. P. Grilo & Claudia Rahmann, 2010. "Crowbar System in Doubly Fed Induction Wind Generators," Energies, MDPI, vol. 3(4), pages 1-16, April.
    2. Yun Wang & Qiuwei Wu & Honghua Xu & Qinglai Guo & Hongbin Sun, 2014. "Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through," Energies, MDPI, vol. 7(7), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Jorge Luis Sosa-Avendaño & Pascal Gartmann & Sebastian Frahm & Jens Fortmann & Poul Ejnar Sørensen & Emilio Gómez-Lázaro, 2019. "Fault-Ride Trough Validation of IEC 61400-27-1 Type 3 and Type 4 Models of Different Wind Turbine Manufacturers," Energies, MDPI, vol. 12(16), pages 1-18, August.
    2. Florin Onea & Andrés Ruiz & Eugen Rusu, 2020. "An Evaluation of the Wind Energy Resources along the Spanish Continental Nearshore," Energies, MDPI, vol. 13(15), pages 1-23, August.
    3. He, Xiuqiang & Geng, Hua & Mu, Gang, 2021. "Modeling of wind turbine generators for power system stability studies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Alberto Lorenzo-Bonache & Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Ángel Molina-García & Emilio Gómez-Lázaro, 2017. "Generic Type 3 Wind Turbine Model Based on IEC 61400-27-1: Parameter Analysis and Transient Response under Voltage Dips," Energies, MDPI, vol. 10(9), pages 1-23, September.
    5. Raquel Villena-Ruiz & Francisco Jiménez-Buendía & Andrés Honrubia-Escribano & Ángel Molina-García & Emilio Gómez-Lázaro, 2019. "Compliance of a Generic Type 3 WT Model with the Spanish Grid Code," Energies, MDPI, vol. 12(9), pages 1-20, April.
    6. Tania García-Sánchez & Irene Muñoz-Benavente & Emilio Gómez-Lázaro & Ana Fernández-Guillamón, 2020. "Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips," Energies, MDPI, vol. 13(16), pages 1-19, August.
    7. Müfit Altin & Jan Christian Kuhlmann & Kaushik Das & Anca Daniela Hansen, 2018. "Optimization of Synthetic Inertial Response from Wind Power Plants," Energies, MDPI, vol. 11(5), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Deng & Zhenghao Qi & Nan Xia & Tong Gao & Yang Zhang & Jiandong Duan, 2022. "Control Strategy and Parameter Optimization Based on Grid Side Current Dynamic Change Rate for Doubly-Fed Wind Turbine High Voltage Ride Through," Energies, MDPI, vol. 15(21), pages 1-19, October.
    2. Honrubia-Escribano, A. & Gómez-Lázaro, E. & Fortmann, J. & Sørensen, P. & Martin-Martinez, S., 2018. "Generic dynamic wind turbine models for power system stability analysis: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1939-1952.
    3. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    4. Rita M. Monteiro Pereira & Adelino J. C. Pereira & Carlos Machado Ferreira & Fernando P. Maciel Barbosa, 2018. "Influence of Crowbar and Chopper Protection on DFIG during Low Voltage Ride Through," Energies, MDPI, vol. 11(4), pages 1-13, April.
    5. Raquel Villena-Ruiz & Alberto Lorenzo-Bonache & Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Emilio Gómez-Lázaro, 2019. "Implementation of IEC 61400-27-1 Type 3 Model: Performance Analysis under Different Modeling Approaches," Energies, MDPI, vol. 12(14), pages 1-23, July.
    6. Mustafa Kaya, 2019. "A CFD Based Application of Support Vector Regression to Determine the Optimum Smooth Twist for Wind Turbine Blades," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    7. Oscar Barambones & Jose A. Cortajarena & Patxi Alkorta & Jose M. Gonzalez De Durana, 2014. "A Real-Time Sliding Mode Control for a Wind Energy System Based on a Doubly Fed Induction Generator," Energies, MDPI, vol. 7(10), pages 1-22, October.
    8. Kumeshan Reddy & Akshay Kumar Saha, 2022. "A Heuristic Approach to Optimal Crowbar Setting and Low Voltage Ride through of a Doubly Fed Induction Generator," Energies, MDPI, vol. 15(24), pages 1-36, December.
    9. Wang, Yunqi & Ravishankar, Jayashri & Phung, Toan, 2016. "A study on critical clearing time (CCT) of micro-grids under fault conditions," Renewable Energy, Elsevier, vol. 95(C), pages 381-395.
    10. Vandai Le & Xinran Li & Yong Li & Tran Le Thang Dong & Caoquyen Le, 2016. "An Innovative Control Strategy to Improve the Fault Ride-Through Capability of DFIGs Based on Wind Energy Conversion Systems," Energies, MDPI, vol. 9(2), pages 1-23, January.
    11. Oscar Barambones, 2012. "Sliding Mode Control Strategy for Wind Turbine Power Maximization," Energies, MDPI, vol. 5(7), pages 1-21, July.
    12. Fan Xiao & Zhe Zhang & Xianggen Yin, 2015. "Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions," Energies, MDPI, vol. 8(10), pages 1-22, September.
    13. Fenglin Miao & Hongsheng Shi & Xiaoqing Zhang, 2015. "Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips," Energies, MDPI, vol. 8(10), pages 1-18, October.
    14. Vicente León-Martínez & Joaquín Montañana-Romeu, 2011. "Analysis of Wind Generator Operations under Unbalanced Voltage Dips in the Light of the Spanish Grid Code," Energies, MDPI, vol. 4(8), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1048-:d:85068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.