IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p941-d82661.html
   My bibliography  Save this article

Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission

Author

Listed:
  • Yi Liang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Dongxiao Niu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Ye Cao

    (College of Management and Economy, Beijing Institute of Technology, Beijing 100081, China)

  • Wei-Chiang Hong

    (Department of Information Management, Oriental Institute of Technology, New Taipei 220, Taiwan)

Abstract

The power industry is the main battlefield of CO 2 emission reduction, which plays an important role in the implementation and development of the low carbon economy. The forecasting of electricity demand can provide a scientific basis for the country to formulate a power industry development strategy and further promote the sustained, healthy and rapid development of the national economy. Under the goal of low-carbon economy, medium and long term electricity demand forecasting will have very important practical significance. In this paper, a new hybrid electricity demand model framework is characterized as follows: firstly, integration of grey relation degree (GRD) with induced ordered weighted harmonic averaging operator (IOWHA) to propose a new weight determination method of hybrid forecasting model on basis of forecasting accuracy as induced variables is presented; secondly, utilization of the proposed weight determination method to construct the optimal hybrid forecasting model based on extreme learning machine (ELM) forecasting model and multiple regression (MR) model; thirdly, three scenarios in line with the level of realization of various carbon emission targets and dynamic simulation of effect of low-carbon economy on future electricity demand are discussed. The resulting findings show that, the proposed model outperformed and concentrated some monomial forecasting models, especially in boosting the overall instability dramatically. In addition, the development of a low-carbon economy will increase the demand for electricity, and have an impact on the adjustment of the electricity demand structure.

Suggested Citation

  • Yi Liang & Dongxiao Niu & Ye Cao & Wei-Chiang Hong, 2016. "Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission," Energies, MDPI, vol. 9(11), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:941-:d:82661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio Sánchez-Esguevillas, 2012. "Classification and Clustering of Electricity Demand Patterns in Industrial Parks," Energies, MDPI, vol. 5(12), pages 1-14, December.
    2. Trotter, Ian M. & Bolkesjø, Torjus Folsland & Féres, José Gustavo & Hollanda, Lavinia, 2016. "Climate change and electricity demand in Brazil: A stochastic approach," Energy, Elsevier, vol. 102(C), pages 596-604.
    3. Pérez-García, Julián & Moral-Carcedo, Julián, 2016. "Analysis and long term forecasting of electricity demand trough a decomposition model: A case study for Spain," Energy, Elsevier, vol. 97(C), pages 127-143.
    4. Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
    5. Hussain, Anwar & Rahman, Muhammad & Memon, Junaid Alam, 2016. "Forecasting electricity consumption in Pakistan: the way forward," Energy Policy, Elsevier, vol. 90(C), pages 73-80.
    6. Schweizer, Vanessa J. & Morgan, M. Granger, 2016. "Bounding US electricity demand in 2050," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 215-223.
    7. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
    8. Karin Kandananond, 2011. "Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach," Energies, MDPI, vol. 4(8), pages 1-12, August.
    9. Zhang, Chi & Yan, Jinyue, 2015. "CDM’s influence on technology transfers: A study of the implemented clean development mechanism projects in China," Applied Energy, Elsevier, vol. 158(C), pages 355-365.
    10. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    11. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
    12. Yusuke Kishita & Yohei Yamaguchi & Yasushi Umeda & Yoshiyuki Shimoda & Minako Hara & Atsushi Sakurai & Hiroki Oka & Yuriko Tanaka, 2016. "Describing Long-Term Electricity Demand Scenarios in the Telecommunications Industry: A Case Study of Japan," Sustainability, MDPI, vol. 8(1), pages 1-16, January.
    13. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
    14. Torrini, Fabiano Castro & Souza, Reinaldo Castro & Cyrino Oliveira, Fernando Luiz & Moreira Pessanha, Jose Francisco, 2016. "Long term electricity consumption forecast in Brazil: A fuzzy logic approach," Socio-Economic Planning Sciences, Elsevier, vol. 54(C), pages 18-27.
    15. Maria Chiara D'Errico & Carlo Andrea Bollino, 2015. "Bayesian Analysis of Demand Elasticity in the Italian Electricity Market," Sustainability, MDPI, vol. 7(9), pages 1-22, September.
    16. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jindamas Sutthichaimethee & Kuskana Kubaha, 2018. "Forecasting Energy-Related Carbon Dioxide Emissions in Thailand’s Construction Sector by Enriching the LS-ARIMAXi-ECM Model," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    2. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    3. Wang, Hongxia & Zhang, Junfeng & Fang, Hong, 2017. "Electricity footprint of China’s industrial sectors and its socioeconomic drivers," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 98-106.
    4. Yi Liang & Haichao Wang, 2021. "Using Improved SPA and ICS-LSSVM for Sustainability Assessment of PV Industry along the Belt and Road," Energies, MDPI, vol. 14(12), pages 1-19, June.
    5. Dongxiao Niu & Yi Liang & Haichao Wang & Meng Wang & Wei-Chiang Hong, 2017. "Icing Forecasting of Transmission Lines with a Modified Back Propagation Neural Network-Support Vector Machine-Extreme Learning Machine with Kernel (BPNN-SVM-KELM) Based on the Variance-Covariance Wei," Energies, MDPI, vol. 10(8), pages 1-21, August.
    6. Hongwei Wang & Yuansheng Huang & Chong Gao & Yuqing Jiang, 2019. "Cost Forecasting Model of Transformer Substation Projects Based on Data Inconsistency Rate and Modified Deep Convolutional Neural Network," Energies, MDPI, vol. 12(16), pages 1-21, August.
    7. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    8. Hongmei Zhao & Yang Xu & Wei-Chiang Hong & Yi Liang & Dandan Zou, 2021. "Smart Evaluation of Green Campus Sustainability Considering Energy Utilization," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    9. Kai Lei & Buqing Ye & Jin Cao & Rui Zhang & Dong Liu, 2017. "Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O 2 /N 2 , O 2 /CO 2 , and O 2 /H 2 O Atmospheres," Energies, MDPI, vol. 10(11), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    2. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    3. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    4. Chi Zhang & Zhengning Pu & Jiasha Fu, 2018. "The Recurrence Interval Difference of Power Load in Heavy/Light Industries of China," Energies, MDPI, vol. 11(1), pages 1-20, January.
    5. João Vitor Leme & Wallace Casaca & Marilaine Colnago & Maurício Araújo Dias, 2020. "Towards Assessing the Electricity Demand in Brazil: Data-Driven Analysis and Ensemble Learning Models," Energies, MDPI, vol. 13(6), pages 1-20, March.
    6. Angelopoulos, Dimitrios & Siskos, Yannis & Psarras, John, 2019. "Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece," European Journal of Operational Research, Elsevier, vol. 275(1), pages 252-265.
    7. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    8. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    9. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "The Efficiency of Long-Term Forecasting Model on Final Energy Consumption in Thailand’s Petroleum Industries Sector: Enriching the LT-ARIMAXS Model under a Sustainability Policy," Energies, MDPI, vol. 11(8), pages 1-18, August.
    10. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    11. Nyoni, Thabani, 2019. "Modeling and forecasting demand for electricity in Zimbabwe using the Box-Jenkins ARIMA technique," MPRA Paper 96903, University Library of Munich, Germany.
    12. Xingcai Zhou & Jiangyan Wang, 2021. "Panel semiparametric quantile regression neural network for electricity consumption forecasting," Papers 2103.00711, arXiv.org.
    13. Velasquez, Carlos E. & Zocatelli, Matheus & Estanislau, Fidellis B.G.L. & Castro, Victor F., 2022. "Analysis of time series models for Brazilian electricity demand forecasting," Energy, Elsevier, vol. 247(C).
    14. Xiong, Xin & Hu, Xi & Guo, Huan, 2021. "A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption," Energy, Elsevier, vol. 234(C).
    15. Qin, Quande & Liu, Yuan & Huang, Jia-Ping, 2020. "A cooperative game analysis for the allocation of carbon emissions reduction responsibility in China's power industry," Energy Economics, Elsevier, vol. 92(C).
    16. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    17. Fan, Jing-Li & Hu, Jia-Wei & Zhang, Xian, 2019. "Impacts of climate change on electricity demand in China: An empirical estimation based on panel data," Energy, Elsevier, vol. 170(C), pages 880-888.
    18. Chen, Hai-Bao & Pei, Ling-Ling & Zhao, Yu-Feng, 2021. "Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach," Energy, Elsevier, vol. 222(C).
    19. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    20. Cheng-Wen Lee & Bing-Yi Lin, 2016. "Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting," Energies, MDPI, vol. 9(11), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:941-:d:82661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.