IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2063-d162649.html
   My bibliography  Save this article

The Efficiency of Long-Term Forecasting Model on Final Energy Consumption in Thailand’s Petroleum Industries Sector: Enriching the LT-ARIMAXS Model under a Sustainability Policy

Author

Listed:
  • Pruethsan Sutthichaimethee

    (Division of Energy Management Technology, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road., Bang Mod, Thung Khru, Bangkok 10140, Thailand)

  • Kuskana Kubaha

    (Division of Energy Management Technology, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road., Bang Mod, Thung Khru, Bangkok 10140, Thailand)

Abstract

Presently, Thailand runs various sustainable development-based policies to boost the growth in economy, society, and environment. In this study, the economic and social growth was found to continuously increase and negatively deteriorate the environment at the same time due to a more massive final energy consumption in the petroleum industries sector than any other sectors. Therefore, it is necessary to establish national planning and it requires an effective forecasting model to support Thailand’s policy-making. This study aimed to construct a forecasting model for a final energy consumption prediction in Thailand’s petroleum industry sector for a longer-term (2018–2037) at a maximum efficiency from a certain class of methods. The Long Term-Autoregressive Integrated Moving Average with Exogeneous variables and Error Correction Mechanism model (LT-ARIMAXS model) (p, d, q, Xi, ECT ( t− 1) ) was adapted from the autoregressive and moving average model incorporating influential variables together in both long-term relationships to produce the best model for prediction performance. All relevant variables in the model are stationary at Level I(0) or Level I(1). In terms of the extraneous variables, they consist of per capita GDP, population growth, oil price, energy intensity, urbanization rate, industrial structure, and net exports. The study found that the variables used are the causal factors and stationary at the first difference as well as co-integrated. With such features, it reflects that the variables are influential over the final energy consumption. The LT-ARIMAXS model (2,1,2) determined a proper period ( t − i ) through a white noise process with the Q test statistical method. It shows that the LT-ARIMAXS model (2,1,2) does not generate the issues of heteroskedasticity, multicollinearity, and autocorrelation. The performance of LT-ARIMAXS model (2,1,2) was tested based on the mean absolute percentage error (MAPE) and the root mean square error (RMSE). The LT-ARIMAXS model (2,1,2) can predict the final energy consumption based on the Sustainable Development Plan for the 20 years from 2018 to 2037. The results showed that the final energy consumption continues to increase steadily by 121,461 ktoe in 2037. Furthermore, the findings present that the growth rate (2037/2017) increases by 109.8%, which is not in line with Thailand’s reduction policy. In this study, the MAPE was valued at 0.97% and RMSE was valued at 2.12% when compared to the other old models. Therefore, the LT-ARIMAXS model (2,1,2) can be useful and appropriate for policy-making to achieve sustainability.

Suggested Citation

  • Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "The Efficiency of Long-Term Forecasting Model on Final Energy Consumption in Thailand’s Petroleum Industries Sector: Enriching the LT-ARIMAXS Model under a Sustainability Policy," Energies, MDPI, vol. 11(8), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2063-:d:162649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
    2. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
    3. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    4. Feng Jiang & Xue Yang & Shuyu Li, 2018. "Comparison of Forecasting India’s Energy Demand Using an MGM, ARIMA Model, MGM-ARIMA Model, and BP Neural Network Model," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    5. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    6. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    7. Jie Zhao & Nguyen Xuan Thinh & Cheng Li, 2017. "Investigation of the Impacts of Urban Land Use Patterns on Energy Consumption in China: A Case Study of 20 Provincial Capital Cities," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    8. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    9. Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
    10. Wang, Qiang & Li, Rongrong, 2017. "Decline in China's coal consumption: An evidence of peak coal or a temporary blip?," Energy Policy, Elsevier, vol. 108(C), pages 696-701.
    11. Yusuke Kishita & Yohei Yamaguchi & Yasushi Umeda & Yoshiyuki Shimoda & Minako Hara & Atsushi Sakurai & Hiroki Oka & Yuriko Tanaka, 2016. "Describing Long-Term Electricity Demand Scenarios in the Telecommunications Industry: A Case Study of Japan," Sustainability, MDPI, vol. 8(1), pages 1-16, January.
    12. Shuyu Li & Rongrong Li, 2017. "Comparison of Forecasting Energy Consumption in Shandong, China Using the ARIMA Model, GM Model, and ARIMA-GM Model," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    13. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    14. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    15. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    16. Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
    17. Xiong, Ping-ping & Dang, Yao-guo & Yao, Tian-xiang & Wang, Zheng-xin, 2014. "Optimal modeling and forecasting of the energy consumption and production in China," Energy, Elsevier, vol. 77(C), pages 623-634.
    18. Bo Zeng & Meng Zhou & Jun Zhang, 2017. "Forecasting the Energy Consumption of China’s Manufacturing Using a Homologous Grey Prediction Model," Sustainability, MDPI, vol. 9(11), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pruethsan Sutthichaimethee & Chanintorn Jittawiriyanukoon, 2022. "Analyzing the Impact of Causal Factors on Political Management to Determine Sustainability Policy under Environmental Law: Enriching the Covariance-based SEMxi Model," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 282-293, July.
    2. Wen-Hsien Tsai, 2019. "Modeling and Simulation of Carbon Emission-Related Issues," Energies, MDPI, vol. 12(13), pages 1-8, July.
    3. Pruethsan Sutthichaimethee & Harlida Abdul Wahab, 2021. "A Forecasting Model in Managing Future Scenarios to Achieve the Sustainable Development Goals of Thailand s Environmental Law: Enriching the Path Analysis-VARIMA-OVi Model," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 398-411.
    4. Pruethsan Sutthichaimethee & Jindamas Sutthichaimethee & Chittinan Vutikorn & Danupon Ariyasajjakorn & Sirapatsorn Wongthongdee & Srochinee Siriwattana & Apinyar Chatchorfa & Borworn Khomchunsri, 2023. "Guidelines for Increasing the Effectiveness of Thailand s Sustainable Development Policy based on Energy Consumption: Enriching the Path-GARCH Model," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 67-74, January.
    5. Pruethsan Sutthichaimethee & Sthianrapab Naluang, 2019. "The Efficiency of the Sustainable Development Policy for Energy Consumption under Environmental Law in Thailand: Adapting the SEM-VARIMAX Model," Energies, MDPI, vol. 12(16), pages 1-21, August.
    6. Pruethsan Sutthichaimethee & Chanintorn Jittawiriyanukoon, 2022. "The Impact of Causal Factors Relationship over the Changes in Future Scenario Management under the Sustainability Policy of Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 36-46, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pruethsan Sutthichaimethee & Jindamas Sutthichaimethee & Chittinan Vutikorn & Danupon Ariyasajjakorn & Sirapatsorn Wongthongdee & Srochinee Siriwattana & Apinyar Chatchorfa & Borworn Khomchunsri, 2023. "Guidelines for Increasing the Effectiveness of Thailand s Sustainable Development Policy based on Energy Consumption: Enriching the Path-GARCH Model," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 67-74, January.
    2. Feng Jiang & Xue Yang & Shuyu Li, 2018. "Comparison of Forecasting India’s Energy Demand Using an MGM, ARIMA Model, MGM-ARIMA Model, and BP Neural Network Model," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    3. Pruethsan Sutthichaimethee & Boonton Dockthaisong, 2018. "A Relationship of Causal Factors in the Economic, Social, and Environmental Aspects Affecting the Implementation of Sustainability Policy in Thailand: Enriching the Path Analysis Based on a GMM Model," Resources, MDPI, vol. 7(4), pages 1-26, December.
    4. Jindamas Sutthichaimethee & Kuskana Kubaha, 2018. "Forecasting Energy-Related Carbon Dioxide Emissions in Thailand’s Construction Sector by Enriching the LS-ARIMAXi-ECM Model," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    5. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    6. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    7. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    8. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "A Relational Analysis Model of the Causal Factors Influencing CO 2 in Thailand’s Industrial Sector under a Sustainability Policy Adapting the VARIMAX-ECM Model," Energies, MDPI, vol. 11(7), pages 1-16, July.
    9. Ali MNA & Moheddine YOUNSI, 2018. "A monetary conditions index and its application on Tunisian economic forecasting," Journal of Economics and Political Economy, KSP Journals, vol. 5(1), pages 38-56, March.
    10. Hauser, Shmuel & Kedar-Levy, Haim & Milo, Orit, 2022. "Price discovery during parallel stocks and options preopening: Information distortion and hints of manipulation," Journal of Financial Markets, Elsevier, vol. 59(PA).
    11. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    12. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    13. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    14. Bernardina Algieri, 2014. "A roller coaster ride: an empirical investigation of the main drivers of the international wheat price," Agricultural Economics, International Association of Agricultural Economists, vol. 45(4), pages 459-475, July.
    15. Garg, Bhavesh & Prabheesh, K.P., 2021. "Testing the intertemporal sustainability of current account in the presence of endogenous structural breaks: Evidence from the top deficit countries," Economic Modelling, Elsevier, vol. 97(C), pages 365-379.
    16. Levent KORAP, 2008. "Exchange Rate Determination Of Tl/Us$:A Co-Integration Approach," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 7(1), pages 24-50, May.
    17. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    18. Pedro Hugo Clavijo Cortes, 2017. "Balance comercial y volatilidad del tipo de cambio nominal: Un estudio de series de tiempo para Colombia," Revista Economía y Región, Universidad Tecnológica de Bolívar, vol. 11(1), pages 37-58, June.
    19. Biswajit Maitra, 2011. "Anticipated Money, Unanticipated Money and Output Variations in Singapore," Journal of Quantitative Economics, The Indian Econometric Society, vol. 9(1), pages 118-133.
    20. Sulaiman, Saidu & Masih, Mansur, 2017. "Is liberalizing finance the game in town for Nigeria ?," MPRA Paper 95569, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2063-:d:162649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.