IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v158y2015icp355-365.html
   My bibliography  Save this article

CDM’s influence on technology transfers: A study of the implemented clean development mechanism projects in China

Author

Listed:
  • Zhang, Chi
  • Yan, Jinyue

Abstract

Technology transfers through the Clean Development Mechanism (CDM) under the Kyoto Protocol is one of the most important catalysts in the cooperation between developed (Annex I) and developing (non-Annex I) countries for climate change mitigation. With the large-scale implementation of CDM projects in recent years, it is important to timely and comprehensively analyze the effectiveness of technology transfers in these implemented projects on the level of individual countries. In this context, China is of particular significance as it is the biggest host country of CDM projects in the world; 50% of total CDM projects implemented from 2007 to 2012 have issued Certified Emission Reductions (CERs) to 60% of all of the CDM projects. In this study, we evaluated the performance of technology transfers in an exclusive database of 754 CDM projects hosted by China between 2007 and 2012 with issued CERs since CERs were first issued in China. In addition, we developed a logistic regression approach using 11-variables that include a series of extended technology transfer-based indicators from the perspectives of project design, economic level, and technology capability that have not been studied in detail in the past. The results show that technology transfers are more likely to occur in large-sized projects with higher CER incomes, in projects with international participants, and in projects involving types such as HFC-23 reduction, fuel substitute, and N2O decomposition, in comparison to projects involving renewable energy. We observed that over 90% of the technology transfer projects only include importation of equipment or training to China. In our findings of the regression results, it shows that technology transfers occurred more often in regions with lower technology capabilities, less energy consumption, and a lower GDP growth rate. Supported by high local technology capability and the governmental strategy with independent innovation, the advantages of introducing technology from other countries are offset by local technology diffusion. In a market view, financial incentives hinder CDM host parties from introducing new equipment or trainings for the high marginal cost, unless the high marginal cost of technology transfer can be offset by a large CDM with a high CER income. Technology transfer is more income-driven than sustainability-driven at the present stage in China. In our analysis, the drive out effect between HFC-23 and renewable projects in CDM suggests China government to publish more effective incentives to attract more sustainable types of CDM projects with a higher level of technology innovation. The results are also discussed in the context of policy issues, which can be helpful for the decision makers when formulating future sustainable strategic plans and policy.

Suggested Citation

  • Zhang, Chi & Yan, Jinyue, 2015. "CDM’s influence on technology transfers: A study of the implemented clean development mechanism projects in China," Applied Energy, Elsevier, vol. 158(C), pages 355-365.
  • Handle: RePEc:eee:appene:v:158:y:2015:i:c:p:355-365
    DOI: 10.1016/j.apenergy.2015.06.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915009137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.06.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kosugi, Takanobu & Tokimatsu, Koji & Zhou, Weisheng, 2005. "An economic analysis of a clean-development mechanism project: a case introducing a natural gas-fired combined heat-and-power facility in a Chinese industrial area," Applied Energy, Elsevier, vol. 80(2), pages 197-212, February.
    2. Rob Youngman & Jake Schmidt & Jin Lee & Heleen De Coninck, 2007. "Evaluating technology transfer in the Clean Development Mechanism and Joint Implementation," Climate Policy, Taylor & Francis Journals, vol. 7(6), pages 488-499, November.
    3. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    4. Erik Haites & Maosheng Duan & Stephen Seres, 2006. "Technology transfer by CDM projects," Climate Policy, Taylor & Francis Journals, vol. 6(3), pages 327-344, May.
    5. Schneider, Malte & Holzer, Andreas & Hoffmann, Volker H., 2008. "Understanding the CDM's contribution to technology transfer," Energy Policy, Elsevier, vol. 36(8), pages 2920-2928, August.
    6. van der Gaast, Wytze & Begg, Katherine & Flamos, Alexandros, 2009. "Promoting sustainable energy technology transfers to developing countries through the CDM," Applied Energy, Elsevier, vol. 86(2), pages 230-236, February.
    7. Heleen De Coninck & Frauke Haake & Nico Van Der Linden, 2007. "Technology transfer in the Clean Development Mechanism," Climate Policy, Taylor & Francis Journals, vol. 7(5), pages 444-456, September.
    8. Schroeder, Miriam, 2009. "Utilizing the clean development mechanism for the deployment of renewable energies in China," Applied Energy, Elsevier, vol. 86(2), pages 237-242, February.
    9. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    10. Jean-Marc Burniaux & Jean Château & Rob Dellink & Romain Duval & Stéphanie Jamet, 2009. "The Economics of Climate Change Mitigation: How to Build the Necessary Global Action in a Cost-Effective Manner," OECD Economics Department Working Papers 701, OECD Publishing.
    11. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    12. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2009. "Technology transfer by CDM projects: A comparison of Brazil, China, India and Mexico," Energy Policy, Elsevier, vol. 37(2), pages 703-711, February.
    13. Axel Michaelowa & Marcus Stronzik & Frauke Eckermann & Alistair Hunt, 2003. "Transaction costs of the Kyoto Mechanisms," Climate Policy, Taylor & Francis Journals, vol. 3(3), pages 261-278, September.
    14. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    15. Guo, Xiao-Dan & Zhu, Lei & Fan, Ying & Xie, Bai-Chen, 2011. "Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA," Energy Policy, Elsevier, vol. 39(5), pages 2352-2360, May.
    16. Zhang, Shuwei & Bauer, Nico & Luderer, Gunnar & Kriegler, Elmar, 2014. "Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND," Applied Energy, Elsevier, vol. 115(C), pages 445-455.
    17. Park, Taeil & Kim, Changyoon & Kim, Hyoungkwan, 2014. "A real option-based model to valuate CDM projects under uncertain energy policies for emission trading," Applied Energy, Elsevier, vol. 131(C), pages 288-296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Yimeng & Takeuchi, Kenji, 2019. "Can climate mitigation help the poor? Measuring impacts of the CDM in rural China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 178-197.
    2. Zhang, Chongchong & Lin, Boqiang, 2024. "Impact of introducing Chinese certified emission reduction scheme to the carbon market: Promoting renewable energy," Renewable Energy, Elsevier, vol. 222(C).
    3. Zhang, Bin & Lai, Kee-hung & Wang, Bo & Wang, Zhaohua, 2017. "Shareholder value effects of corporate carbon trading: Empirical evidence from market reaction towards Clean Development Mechanism in China," Energy Policy, Elsevier, vol. 110(C), pages 410-421.
    4. Theresa Stahlke, 2020. "The impact of the Clean Development Mechanism on developing countries’ commitment to mitigate climate change and its implications for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 107-125, January.
    5. Xiuqin Zhang & Xudong Shi & Yasir Khan & Taimoor Hassan & Mohamed Marie, 2023. "Carbon Neutrality Challenge: Analyse the Role of Energy Productivity, Renewable Energy, and Collaboration in Climate Mitigation Technology in OECD Economies," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    6. Lin, Boqiang & Jia, Zhijie, 2017. "The impact of Emission Trading Scheme (ETS) and the choice of coverage industry in ETS: A case study in China," Applied Energy, Elsevier, vol. 205(C), pages 1512-1527.
    7. Nie, S. & Huang, Charley Z. & Huang, G.H. & Li, Y.P. & Chen, J.P. & Fan, Y.R. & Cheng, G.H., 2016. "Planning renewable energy in electric power system for sustainable development under uncertainty – A case study of Beijing," Applied Energy, Elsevier, vol. 162(C), pages 772-786.
    8. Zhou, Wenji & Wang, Tao & Yu, Yadong & Chen, Dingjiang & Zhu, Bing, 2016. "Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030," Applied Energy, Elsevier, vol. 175(C), pages 100-108.
    9. Sovacool, Benjamin K. & Griffiths, Steve & Kim, Jinsoo & Bazilian, Morgan, 2021. "Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Jin, S.W. & Li, Y.P. & Huang, G.H. & Nie, S., 2018. "Analyzing the performance of clean development mechanism for electric power systems under uncertain environment," Renewable Energy, Elsevier, vol. 123(C), pages 382-397.
    11. Jin Guo & Hanqiao Yang, 2022. "CDMs’ effect on environmentally sensitive productivity: evidence from Chinese provinces," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 401-422, December.
    12. Zhang, Yue-Jun & Sun, Ya-Fang & Huang, Junling, 2018. "Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment," Energy Policy, Elsevier, vol. 115(C), pages 119-130.
    13. Yi Liang & Dongxiao Niu & Ye Cao & Wei-Chiang Hong, 2016. "Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission," Energies, MDPI, vol. 9(11), pages 1-22, November.
    14. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    15. Charikleia Karakosta, 2016. "A Holistic Approach for Addressing the Issue of Effective Technology Transfer in the Frame of Climate Change," Energies, MDPI, vol. 9(7), pages 1-20, June.
    16. Damilola Elizabeth Babatunde & Olubayo Moses Babatunde & Tolulope Olusegun Akinbulire & Peter Olabisi Oluseyi, 2018. "Hybrid Energy Systems Model with the Inclusion of Energy Efficiency Measures: A Rural Application Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 310-323.
    17. Yang, Zhenbing & Hao, Chunyan & Shao, Shuai & Chen, Zhuo & Yang, Lili, 2022. "Appropriate technology and energy security: From the perspective of biased technological change," Technological Forecasting and Social Change, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karakosta, Charikleia & Doukas, Haris & Psarras, John, 2010. "Technology transfer through climate change: Setting a sustainable energy pattern," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1546-1557, August.
    2. Seres, Stephen & Haites, Erik & Murphy, Kevin, 2009. "Analysis of technology transfer in CDM projects: An update," Energy Policy, Elsevier, vol. 37(11), pages 4919-4926, November.
    3. Lema, Adrian & Lema, Rasmus, 2016. "Low-carbon innovation and technology transfer in latecomer countries: Insights from solar PV in the clean development mechanism," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 223-236.
    4. Daniela Marconi & Francesca Sanna-Randaccio, 2012. "The clean development mechanism and technology transfer to China," Questioni di Economia e Finanza (Occasional Papers) 129, Bank of Italy, Economic Research and International Relations Area.
    5. Thierry Bréchet & Yann Ménière & Pierre M. Picard, 2016. "The Clean Development Mechanism in a world carbon market," Canadian Journal of Economics, Canadian Economics Association, vol. 49(4), pages 1569-1598, November.
    6. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    7. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    8. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2009. "Technology transfer by CDM projects: A comparison of Brazil, China, India and Mexico," Energy Policy, Elsevier, vol. 37(2), pages 703-711, February.
    9. James Haselip & Ulrich Hansen & Daniel Puig & Sara Trærup & Subash Dhar, 2015. "Governance, enabling frameworks and policies for the transfer and diffusion of low carbon and climate adaptation technologies in developing countries," Climatic Change, Springer, vol. 131(3), pages 363-370, August.
    10. Khem Raj Dahal & Shiva Ch & ra Dhakal, "undated". "The Relative Efficiency of Organic Farming in Nepal," Working papers 105, The South Asian Network for Development and Environmental Economics.
    11. Weitzel, Matthias & Liu, Wan-Hsin & Vaona, Andrea, 2013. "Determinants of technology transfer through CDM: The case of China," Kiel Working Papers 1889, Kiel Institute for the World Economy (IfW Kiel).
    12. Pauline Lacour & Jean-Christophe Simon, 2012. "Les avancées du Mécanisme de Développement Propre : une étape décisive vers un développement "décarboné" au Sud ?," Post-Print halshs-00713067, HAL.
    13. Bortoletto, Wagner Wilson & Pacagnella Junior, Antonio Carlos & Cabello, Otavio Gomes, 2023. "Exploring the scientific literature on clean development mechanisms: A bibliometric analysis," Energy Policy, Elsevier, vol. 183(C).
    14. Karakosta, Charikleia & Psarras, John, 2013. "Understanding CDM potential in the Mediterranean basin: A country assessment of Egypt and Morocco," Energy Policy, Elsevier, vol. 60(C), pages 827-839.
    15. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    16. Jiasen Sun & Guo Li, 2022. "Optimizing emission reduction task sharing: technology and performance perspectives," Annals of Operations Research, Springer, vol. 316(1), pages 581-602, September.
    17. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution," Energy Economics, Elsevier, vol. 49(C), pages 239-256.
    18. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    19. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Returns to damage under undesirable congestion and damages to return under desirable congestion measured by DEA environmental assessment with multiplier restriction: Economic and energy planning for s," Energy Economics, Elsevier, vol. 56(C), pages 288-309.
    20. Kang, Moon Jung & Park, Jihyoun, 2013. "Analysis of the partnership network in the clean development mechanism," Energy Policy, Elsevier, vol. 52(C), pages 543-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:158:y:2015:i:c:p:355-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.