IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3593-d174450.html
   My bibliography  Save this article

Forecasting Energy-Related Carbon Dioxide Emissions in Thailand’s Construction Sector by Enriching the LS-ARIMAXi-ECM Model

Author

Listed:
  • Jindamas Sutthichaimethee

    (Division of Energy Management Technology, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand)

  • Kuskana Kubaha

    (Division of Energy Management Technology, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand)

Abstract

The Thailand Development Policy focuses on the simultaneous growth of the economy, society, and environment. Long-term goals have been set to improve economic and social well-being. At the same time, these aim to reduce the emission of CO 2 in the future, especially in the construction sector, which is deemed important in terms of national development and is a high generator of greenhouse gas. In order to achieve national sustainable development, policy formulation and planning is becoming necessary and requires a tool to undertake such a formulation. The tool is none other than the forecasting of CO 2 emissions in long-term energy consumption to produce a complete and accurate formulation. This research aims to study and forecast energy-related carbon dioxide emissions in Thailand’s construction sector by applying a model incorporating the long- and short-term auto-regressive (AR), integrated (I), moving average (MA) with exogenous variables (Xi) and the error correction mechanism (LS-ARIMAXi-ECM) model. This model is established and attempts to fill the gaps left by the old models. In fact, the model is constructed based on factors that are causal and influential for changes in CO 2 emissions. Both independent variables and dependent variables must be stationary at the same level. In addition, the LS-ARIMAXi-ECM model deploys a co-integration analysis and error correction mechanism (ECM) in its modeling. The study’s findings reveal that the LS-ARIMAXi ( 2 , 1 , 1 , X t − 1 ) -ECM model is a forecasting model with an appropriate time period ( t − i ), as justified by the Q-test statistic and is not a spurious model. Therefore, it is used to forecast CO 2 emissions for the next 20 years (2019 to 2038). From the study, the results show that CO 2 emissions in the construction sector will increase by 37.88% or 61.09 Mt CO 2 Eq. in 2038. Also, the LS-ARIMAXi ( 2 , 1 , 1 , X t − 1 ) -ECM model has been evaluated regarding its performance, and it produces a mean absolute percentage error (MAPE) of 1.01% and root mean square error (RMSE) of 0.93% as compared to the old models. Overall, the results indicate that determining future national sustainable development policies requires an appropriate forecasting model, which is built upon causal and contextual factors according to relevant sectors, to serve as an important tool for future sustainable planning.

Suggested Citation

  • Jindamas Sutthichaimethee & Kuskana Kubaha, 2018. "Forecasting Energy-Related Carbon Dioxide Emissions in Thailand’s Construction Sector by Enriching the LS-ARIMAXi-ECM Model," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3593-:d:174450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petar Kurecic & Filip Kokotovic, 2017. "The Relevance of Political Stability on FDI: A VAR Analysis and ARDL Models for Selected Small, Developed, and Instability Threatened Economies," Economies, MDPI, vol. 5(3), pages 1-21, June.
    2. Rodrigo Lopez Farias & Vicenç Puig & Hector Rodriguez Rangel & Juan J. Flores, 2018. "Multi-Model Prediction for Demand Forecast in Water Distribution Networks," Energies, MDPI, vol. 11(3), pages 1-21, March.
    3. Luping Chen & Liangjun Xu & Yilin Zhou, 2018. "Novel Approach for Lithium-Ion Battery On-Line Remaining Useful Life Prediction Based on Permutation Entropy," Energies, MDPI, vol. 11(4), pages 1-15, April.
    4. Ming Meng & Dongxiao Niu & Wei Sun, 2011. "Forecasting Monthly Electric Energy Consumption Using Feature Extraction," Energies, MDPI, vol. 4(10), pages 1-13, September.
    5. Danilo Pinto Moreira de Souza & Eliane Da Silva Christo & Aryfrance Rocha Almeida, 2017. "Location of Faults in Power Transmission Lines Using the ARIMA Method," Energies, MDPI, vol. 10(10), pages 1-12, October.
    6. Shihong Zeng & Yan Xu & Liming Wang & Jiuying Chen & Qirong Li, 2016. "Forecasting the Allocative Efficiency of Carbon Emission Allowance Financial Assets in China at the Provincial Level in 2020," Energies, MDPI, vol. 9(5), pages 1-18, May.
    7. Fakhri J. Hasanov & Lester C. Hunt & Ceyhun I. Mikayilov, 2016. "Modeling and Forecasting Electricity Demand in Azerbaijan Using Cointegration Techniques," Energies, MDPI, vol. 9(12), pages 1-31, December.
    8. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    9. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
    10. Shihong Zeng & Jiuying Chen, 2016. "Forecasting the Allocation Ratio of Carbon Emission Allowance Currency for 2020 and 2030 in China," Sustainability, MDPI, vol. 8(7), pages 1-28, July.
    11. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    12. Yi Liang & Dongxiao Niu & Haichao Wang & Hanyu Chen, 2017. "Assessment Analysis and Forecasting for Security Early Warning of Energy Consumption Carbon Emissions in Hebei Province, China," Energies, MDPI, vol. 10(3), pages 1-23, March.
    13. Hong Chang & Wei Sun & Xingsheng Gu, 2013. "Forecasting Energy CO 2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model," Energies, MDPI, vol. 6(3), pages 1-22, March.
    14. Rongrong Li & Min Su, 2017. "The Role of Natural Gas and Renewable Energy in Curbing Carbon Emission: Case Study of the United States," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    15. Anca Mehedintu & Mihaela Sterpu & Georgeta Soava, 2018. "Estimation and Forecasts for the Share of Renewable Energy Consumption in Final Energy Consumption by 2020 in the European Union," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    16. Yi Liang & Dongxiao Niu & Ye Cao & Wei-Chiang Hong, 2016. "Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission," Energies, MDPI, vol. 9(11), pages 1-22, November.
    17. Shuyu Li & Xue Yang & Rongrong Li, 2018. "Forecasting China’s Coal Power Installed Capacity: A Comparison of MGM, ARIMA, GM-ARIMA, and NMGM Models," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    18. Xu, Weijun & Gu, Ren & Liu, Youzhu & Dai, Yongwu, 2015. "Forecasting energy consumption using a new GM–ARMA model based on HP filter: The case of Guangdong Province of China," Economic Modelling, Elsevier, vol. 45(C), pages 127-135.
    19. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    20. Feng Jiang & Xue Yang & Shuyu Li, 2018. "Comparison of Forecasting India’s Energy Demand Using an MGM, ARIMA Model, MGM-ARIMA Model, and BP Neural Network Model," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    21. Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "The Efficiency of Long-Term Forecasting Model on Final Energy Consumption in Thailand’s Petroleum Industries Sector: Enriching the LT-ARIMAXS Model under a Sustainability Policy," Energies, MDPI, vol. 11(8), pages 1-18, August.
    2. Ali MNA & Moheddine YOUNSI, 2018. "A monetary conditions index and its application on Tunisian economic forecasting," Journal of Economics and Political Economy, KSP Journals, vol. 5(1), pages 38-56, March.
    3. Hauser, Shmuel & Kedar-Levy, Haim & Milo, Orit, 2022. "Price discovery during parallel stocks and options preopening: Information distortion and hints of manipulation," Journal of Financial Markets, Elsevier, vol. 59(PA).
    4. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    5. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    6. Bernardina Algieri, 2014. "A roller coaster ride: an empirical investigation of the main drivers of the international wheat price," Agricultural Economics, International Association of Agricultural Economists, vol. 45(4), pages 459-475, July.
    7. Garg, Bhavesh & Prabheesh, K.P., 2021. "Testing the intertemporal sustainability of current account in the presence of endogenous structural breaks: Evidence from the top deficit countries," Economic Modelling, Elsevier, vol. 97(C), pages 365-379.
    8. Levent KORAP, 2008. "Exchange Rate Determination Of Tl/Us$:A Co-Integration Approach," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 7(1), pages 24-50, May.
    9. Pedro Hugo Clavijo Cortes, 2017. "Balance comercial y volatilidad del tipo de cambio nominal: Un estudio de series de tiempo para Colombia," Revista Economía y Región, Universidad Tecnológica de Bolívar, vol. 11(1), pages 37-58, June.
    10. Pruethsan Sutthichaimethee & Boonton Dockthaisong, 2018. "A Relationship of Causal Factors in the Economic, Social, and Environmental Aspects Affecting the Implementation of Sustainability Policy in Thailand: Enriching the Path Analysis Based on a GMM Model," Resources, MDPI, vol. 7(4), pages 1-26, December.
    11. Biswajit Maitra, 2011. "Anticipated Money, Unanticipated Money and Output Variations in Singapore," Journal of Quantitative Economics, The Indian Econometric Society, vol. 9(1), pages 118-133.
    12. Sulaiman, Saidu & Masih, Mansur, 2017. "Is liberalizing finance the game in town for Nigeria ?," MPRA Paper 95569, University Library of Munich, Germany.
    13. Fakhri, Hasanov, 2010. "The Impact of Real Effective Exchange Rate on the Non-oil Export: The Case of Azerbaijan," MPRA Paper 29556, University Library of Munich, Germany.
    14. Alexander Schätz, 2010. "Macroeconomic Effects on Emerging Market Sector Indices," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 9(2), pages 131-169, August.
    15. Jude Okechukwu Chukwu, 2013. "Budget Deficits, Money Growth and Price Level in Nigeria," African Development Review, African Development Bank, vol. 25(4), pages 468-477, December.
    16. Jeyhun I. Mikayilov & Fakhri J. Hasanov & Carlo A. Bollino & Ceyhun Mahmudlu, 2017. "Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach," Energies, MDPI, vol. 10(11), pages 1-12, November.
    17. Esther Stroe-Kunold & Joachim Werner, 2009. "A drunk and her dog: a spurious relation? Cointegration tests as instruments to detect spurious correlations between integrated time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(6), pages 913-940, November.
    18. Jindamas Sutthichaimethee & Kuskana Kubaha, 2018. "The Relationship of Causal Factors Affecting the Future Equilibrium Change of Total Final Energy Consumption in Thailand’s Construction Sector under a Sustainable Development Goal: Enriching the SE-VA," Resources, MDPI, vol. 8(1), pages 1-18, December.
    19. Ruqayya Aljifri, 2020. "The Macroeconomy, Oil and the Stock Market: A Multiple Equation Time Series Analysis of Saudi Arabia," Economics Discussion Papers em-dp2020-27, Department of Economics, University of Reading.
    20. repec:ebl:ecbull:v:30:y:2010:i:1:p:558-576 is not listed on IDEAS
    21. Khurram Ashfaq Baluch & Syed Kalim Hyder Bukhari, 2012. "Price and Income Elasticity of Imports: The Case of Pakistan," SBP Working Paper Series 48, State Bank of Pakistan, Research Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3593-:d:174450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.