IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7653-d590900.html
   My bibliography  Save this article

Smart Evaluation of Green Campus Sustainability Considering Energy Utilization

Author

Listed:
  • Hongmei Zhao

    (Educational Technology and Information Center, HeiLongJiang BaYi Agricultural University, Daqing 163000, China)

  • Yang Xu

    (School of Economics and Management, Hubei University of Science and Technology, Xianning 437100, China)

  • Wei-Chiang Hong

    (Department of Information Management, Oriental Institute of Technology, New Taipei 224, Taiwan)

  • Yi Liang

    (School of Management, Hebei GEO University, Shijiazhuang 050031, China
    Strategy and Management Base of Mineral Resources in Hebei Province, Hebei GEO University, Shijiazhuang 050031, China)

  • Dandan Zou

    (Educational Technology and Information Center, HeiLongJiang BaYi Agricultural University, Daqing 163000, China)

Abstract

With the change in energy utilization, a fast and accurate evaluation method is of great importance to promote green campus sustainability. In order to improve the feasibility and timeliness of evaluation, an intelligent evaluation model based on dynamic Bayesian inference and adaptive network fuzzy inference system (DBN-ANFIS) is proposed. Firstly, from the perspective of sustainability and considering the changes in energy utilization, a green campus evaluation index system is constructed from four levels: campus resource utilization, campus environment creation, campus usage management, and campus eco-efficiency. On this basis, the parameters of the adaptive network fuzzy inference system (ANFIS) are optimized based on dynamic Bayesian inference (DBN), so as to apply the modified model to the green campus evaluation work of the Spark big data operation platform. Finally, the scientificity of the model proposed in this paper is verified through example analysis, which is conducive to the real-time and effective evaluation of green campus sustainability and provides scientific and rational decision support to improve its management.

Suggested Citation

  • Hongmei Zhao & Yang Xu & Wei-Chiang Hong & Yi Liang & Dandan Zou, 2021. "Smart Evaluation of Green Campus Sustainability Considering Energy Utilization," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7653-:d:590900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Bifeng & Dewancker, Bart, 2021. "A case study on the suitability of STARS for green campus in China," Evaluation and Program Planning, Elsevier, vol. 84(C).
    2. Heng Shue Teah & Qinyu Yang & Motoharu Onuki & Heng Yi Teah, 2019. "Incorporating External Effects into Project Sustainability Assessments: The Case of a Green Campus Initiative Based on a Solar PV System," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
    3. Koray Altintas & Ozalp Vayvay & Sinan Apak & Emine Cobanoglu, 2020. "An Extended GRA Method Integrated with Fuzzy AHP to Construct a Multidimensional Index for Ranking Overall Energy Sustainability Performances," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    4. Wu, Peng & Song, Yongze & Shou, Wenchi & Chi, Hunglin & Chong, Heap-Yih & Sutrisna, Monty, 2017. "A comprehensive analysis of the credits obtained by LEED 2009 certified green buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 370-379.
    5. Hamed Gholami & Mohamad Faizal Bachok & Muhamad Zameri Mat Saman & Dalia Streimikiene & Safian Sharif & Norhayati Zakuan, 2020. "An ISM Approach for the Barrier Analysis in Implementing Green Campus Operations: Towards Higher Education Sustainability," Sustainability, MDPI, vol. 12(1), pages 1-19, January.
    6. Wu, Yunna & Zhang, Ting, 2021. "Risk assessment of offshore wave-wind-solar-compressed air energy storage power plant through fuzzy comprehensive evaluation model," Energy, Elsevier, vol. 223(C).
    7. Azar, Elie & Al Ansari, Hamad, 2017. "Framework to investigate energy conservation motivation and actions of building occupants: The case of a green campus in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 190(C), pages 563-573.
    8. Yi Liang & Dongxiao Niu & Ye Cao & Wei-Chiang Hong, 2016. "Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission," Energies, MDPI, vol. 9(11), pages 1-22, November.
    9. Dashti, Amir & Mazaheri, Omid & Amirkhani, Farid & Mohammadi, Amir H., 2021. "Molecular descriptors-based models for estimating net heat of combustion of chemical compounds," Energy, Elsevier, vol. 217(C).
    10. Liang, Yi & Niu, Dongxiao & Hong, Wei-Chiang, 2019. "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, Elsevier, vol. 166(C), pages 653-663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoqiang He & Tao Yu, 2023. "Evaluating the Benefits and Potential of “Plastic Reduction”: A Case Study of College Students in Western China," Sustainability, MDPI, vol. 15(24), pages 1-14, December.
    2. Ana M. Barreiros & Anabela Durão & Ana Galvão & Cristina Matos & Dina Mateus & Ivo Araújo & Luís Neves & Mário Matos & Sandra Mourato, 2023. "Analyzing Green Behavior and the Rational Use of Water in Portuguese Higher Education Campi," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    3. Junhong Hao & Xialin Ye & Chenfei Yu & Jiayuan Liu & Yimin Ruan & Yingxin Zhang & Feng Hong & Dongyue Zhang, 2023. "A Novel Individual Carbon Emission Evaluation and Carbon Trading Model for Low-Carbon University Campuses," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    4. Ivo Araújo & Leonel J. R. Nunes & António Curado, 2023. "Preliminary Approach for the Development of Sustainable University Campuses: A Case Study Based on the Mitigation of Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Liang & Haichao Wang, 2021. "Using Improved SPA and ICS-LSSVM for Sustainability Assessment of PV Industry along the Belt and Road," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Yi Liang & Yingying Fan & Yongfang Peng & Haigang An, 2022. "Smart Grid Project Benefit Evaluation Based on a Hybrid Intelligent Model," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    3. Agnieszka Jaszczak & Ewelina Pochodyła & Katarina Kristianova & Natalia Małkowska & Jan K. Kazak, 2021. "Redefinition of Park Design Criteria as a Result of Analysis of Well-Being and Soundscape: The Case Study of the Kortowo Park (Poland)," IJERPH, MDPI, vol. 18(6), pages 1-22, March.
    4. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    5. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    6. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    7. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    8. Peng Wu & Yongze Song & Jun Wang & Xiangyu Wang & Xianbo Zhao & Qinghua He, 2017. "Regional Variations of Credits Obtained by LEED 2009 Certified Green Buildings—A Country Level Analysis," Sustainability, MDPI, vol. 10(1), pages 1-18, December.
    9. Sylvia Novillo-Villegas & Ricardo Ayala-Andrade & Juan Pablo Lopez-Cox & Javier Salazar-Oyaneder & Patricia Acosta-Vargas, 2022. "A Roadmap for Innovation Capacity in Developing Countries," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    10. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Yannick Lessard & Chirjiv Anand & Pierre Blanchet & Caroline Frenette & Ben Amor, 2018. "LEED v4: Where Are We Now? Critical Assessment through the LCA of an Office Building Using a Low Impact Energy Consumption Mix," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1105-1116, October.
    13. Kai Lei & Buqing Ye & Jin Cao & Rui Zhang & Dong Liu, 2017. "Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O 2 /N 2 , O 2 /CO 2 , and O 2 /H 2 O Atmospheres," Energies, MDPI, vol. 10(11), pages 1-12, October.
    14. Hwai-Hui Fu & Yan-Yu Chen & Guan-Jie Wang, 2020. "Using a Fuzzy Analytic Hierarchy Process to Formulate an Effectual Tea Assessment System," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    15. Wei Ding & Xuguang Zhao & Weigao Meng & Haichao Wang, 2022. "Smart Evaluation of Sustainability of Photovoltaic Projects in the Context of Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    16. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    17. Asma Fahim & Qingmei Tan & Bushra Naz & Qurat ul Ain & Sibghat Ullah Bazai, 2021. "Sustainable Higher Education Reform Quality Assessment Using SWOT Analysis with Integration of AHP and Entropy Models: A Case Study of Morocco," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    18. Yan Lu & Xuan Liu & Yan Zhang & Zhiqiao Yang & Yunna Wu, 2023. "Investment Efficiency Assessment Model for Pumped Storage Power Plants Considering Grid Operation Demand under Fuzzy Environment: A Case Study in China," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    19. Nebojsa Bacanin & Catalin Stoean & Miodrag Zivkovic & Miomir Rakic & Roma Strulak-Wójcikiewicz & Ruxandra Stoean, 2023. "On the Benefits of Using Metaheuristics in the Hyperparameter Tuning of Deep Learning Models for Energy Load Forecasting," Energies, MDPI, vol. 16(3), pages 1-21, February.
    20. Dai, Yeming & Yang, Xinyu & Leng, Mingming, 2022. "Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7653-:d:590900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.