IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v49y2012icp355-364.html
   My bibliography  Save this article

The impact of electrified transport on local grid infrastructure: A comparison between electric cars and light rail

Author

Listed:
  • Grenier, Agathe
  • Page, Shannon

Abstract

This study examines the impact on the local electricity grid should electric vehicles (EVs) or a light rail transit (LRT) system be introduced to the city of Christchurch, New Zealand. Spatial analysis highlighted that EV owners would not be evenly distributed throughout the city, and the initial stages of a proposed LRT network would cover only a limited area. Therefore, a few local power substations would have to provide the majority of additional power for both electric transport modes. Without management of EV charging patterns, one of the local substations would be overloaded if more than 2.6% of the Christchurch light vehicle fleet were EVs. The power demand from a LRT system would not overload the local grid given current demand levels. However several substations would need an upgrade 4 years earlier than current plans.

Suggested Citation

  • Grenier, Agathe & Page, Shannon, 2012. "The impact of electrified transport on local grid infrastructure: A comparison between electric cars and light rail," Energy Policy, Elsevier, vol. 49(C), pages 355-364.
  • Handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:355-364
    DOI: 10.1016/j.enpol.2012.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512005435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perujo, Adolfo & Ciuffo, Biagio, 2010. "The introduction of electric vehicles in the private fleet: Potential impact on the electric supply system and on the environment. A case study for the Province of Milan, Italy," Energy Policy, Elsevier, vol. 38(8), pages 4549-4561, August.
    2. Ning Jackie Zhang & Thomas T.H. Wan & Gerald-Mark Breen & Lynn Unruh & Sam Marathe & Shixue Li & Liying Jia, 2010. "Comparison of nursing home care between the USA and China," International Journal of Public Policy, Inderscience Enterprises Ltd, vol. 5(2/3), pages 121-132.
    3. Mullan, Jonathan & Harries, David & Bräunl, Thomas & Whitely, Stephen, 2011. "Modelling the impacts of electric vehicle recharging on the Western Australian electricity supply system," Energy Policy, Elsevier, vol. 39(7), pages 4349-4359, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikołaj Bartłomiejczyk & Leszek Jarzebowicz & Roman Hrbáč, 2022. "Application of Traction Supply System for Charging Electric Cars," Energies, MDPI, vol. 15(4), pages 1-13, February.
    2. Christian Spreafico & Davide Russo, 2020. "Exploiting the Scientific Literature for Performing Life Cycle Assessment about Transportation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    3. Martos, A. & Pacheco-Torres, R. & Ordóñez, J. & Jadraque-Gago, E., 2016. "Towards successful environmental performance of sustainable cities: Intervening sectors. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 479-495.
    4. Taczanowski Jakub & Kołoś Arkadiusz & Gwosdz Krzysztof & Domański Bolesław & Guzik Robert, 2018. "The development of low-emission public urban transport in Poland," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 41(41), pages 79-92, September.
    5. Pol Olivella-Rosell & Roberto Villafafila-Robles & Andreas Sumper & Joan Bergas-Jané, 2015. "Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks," Energies, MDPI, vol. 8(5), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    2. Drude, Lukas & Pereira Junior, Luiz Carlos & Rüther, Ricardo, 2014. "Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment," Renewable Energy, Elsevier, vol. 68(C), pages 443-451.
    3. Li, Zhe & Ouyang, Minggao, 2011. "A win-win marginal rent analysis for operator and consumer under battery leasing mode in China electric vehicle market," Energy Policy, Elsevier, vol. 39(6), pages 3222-3237, June.
    4. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    5. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    6. Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
    7. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    8. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    9. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    10. Ruben Garruto & Michela Longo & Wahiba Yaïci & Federica Foiadelli, 2020. "Connecting Parking Facilities to the Electric Grid: A Vehicle-to-Grid Feasibility Study in a Railway Station’s Car Park," Energies, MDPI, vol. 13(12), pages 1-23, June.
    11. Talaei, A. & Begg, K. & Jamasb, T., 2012. "The Large Scale Roll-Out of Electric Vehicles: The Effect on the Electricity Sector and CO2 Emissions," Cambridge Working Papers in Economics 1246, Faculty of Economics, University of Cambridge.
    12. Biresselioglu, Mehmet Efe & Demirbag Kaplan, Melike & Yilmaz, Barbara Katharina, 2018. "Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 1-13.
    13. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    14. Rusich, Andrea & Danielis, Romeo, 2013. "The private and social monetary costs and the energy consumption of a car. An estimate for seven cars with different vehicle technologies on sale in Italy," Working Papers 1301, SIET Società Italiana di Economia dei Trasporti e della Logistica, revised 2013.
    15. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    16. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    17. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    18. Crossin, Enda & Doherty, Peter J.B., 2016. "The effect of charging time on the comparative environmental performance of different vehicle types," Applied Energy, Elsevier, vol. 179(C), pages 716-726.
    19. Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
    20. Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2016. "Italian youngsters' perceptions of alternative fuel vehicles: A fuzzy-set approach," Journal of Business Research, Elsevier, vol. 69(11), pages 5426-5430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:49:y:2012:i:c:p:355-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.