IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i11p12342-12838d58713.html
   My bibliography  Save this article

Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor

Author

Listed:
  • Jing Zhao

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Xu Gao

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Bin Li

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Xiangdong Liu

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Xing Guan

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Multi-phase motors are gaining more attention due to the advantages of good fault tolerance capability and high power density, etc. By applying dual-rotor technology to multi-phase machines, a five-phase dual-rotor permanent magnet synchronous motor (DRPMSM) is researched in this paper to further promote their torque density and fault tolerance capability. It has two rotors and two sets of stator windings, and it can adopt a series drive mode or parallel drive mode. The fault-tolerance capability of the five-phase DRPMSM is researched. All open circuit fault types and corresponding fault tolerance techniques in different drive modes are analyzed. A fault-tolerance control strategy of injecting currents containing a certain third harmonic component is proposed for five-phase DRPMSM to ensure performance after faults in the motor or drive circuit. For adjacent double-phase faults in the motor, based on where the additional degrees of freedom are used, two different fault-tolerance current calculation schemes are adopted and the torque results are compared. Decoupling of the inner motor and outer motor is investigated under fault-tolerant conditions in parallel drive mode. The finite element analysis (FMA) results and co-simulation results based on Simulink-Simplorer-Maxwell verify the effectiveness of the techniques.

Suggested Citation

  • Jing Zhao & Xu Gao & Bin Li & Xiangdong Liu & Xing Guan, 2015. "Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 8(11), pages 1-29, November.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12342-12838:d:58713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/11/12342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/11/12342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Zheng & Fan Wu & Yu Lei & Yi Sui & Bin Yu, 2013. "Investigation of a Novel 24-Slot/14-Pole Six-Phase Fault-Tolerant Modular Permanent-Magnet In-Wheel Motor for Electric Vehicles," Energies, MDPI, vol. 6(10), pages 1-23, September.
    2. Ping Zheng & Fan Wu & Yi Sui & Pengfei Wang & Yu Lei & Haipeng Wang, 2012. "Harmonic Analysis and Fault-Tolerant Capability of a Semi-12-Phase Permanent-Magnet Synchronous Machine Used for EVs," Energies, MDPI, vol. 5(9), pages 1-22, September.
    3. Yi Sui & Ping Zheng & Fan Wu & Bin Yu & Pengfei Wang & Jiawei Zhang, 2014. "Research on a 20-Slot/22-Pole Five-Phase Fault-Tolerant PMSM Used for Four-Wheel-Drive Electric Vehicles," Energies, MDPI, vol. 7(3), pages 1-23, March.
    4. Yumeng Li & Jing Zhao & Zhen Chen & Xiangdong Liu, 2014. "Investigation of a Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor Used for Electric Vehicles," Energies, MDPI, vol. 7(6), pages 1-30, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Akay & Paul Lefley, 2021. "Torque Ripple Reduction Method in a Multiphase PM Machine for No-Fault and Open-Circuit Fault-Tolerant Conditions," Energies, MDPI, vol. 14(9), pages 1-18, May.
    2. Seok-Kyoon Kim, 2017. "Proportional-Type Performance Recovery DC-Link Voltage Tracking Algorithm for Permanent Magnet Synchronous Generators," Energies, MDPI, vol. 10(9), pages 1-17, September.
    3. Hongqian Wei & Youtong Zhang & Lei Yu & Mengzhu Zhang & Khaled Teffah, 2018. "A New Diagnostic Algorithm for Multiple IGBTs Open Circuit Faults by the Phase Currents for Power Inverter in Electric Vehicles," Energies, MDPI, vol. 11(6), pages 1-14, June.
    4. Borzou Yousefi & Soodabeh Soleymani & Babak Mozafari & Seid Asghar Gholamian, 2017. "Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages," Energies, MDPI, vol. 10(10), pages 1-21, September.
    5. Liang Chu & Yi-fan Jia & Dong-sheng Chen & Nan Xu & Yan-wei Wang & Xin Tang & Zhe Xu, 2017. "Research on Control Strategies of an Open-End Winding Permanent Magnet Synchronous Driving Motor (OW-PMSM)-Equipped Dual Inverter with a Switchable Winding Mode for Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-22, May.
    6. Chenyu Gu & Wenxiang Zhao & Bufeng Zhang, 2016. "Simplified Minimum Copper Loss Remedial Control of a Five-Phase Fault-Tolerant Permanent-Magnet Vernier Machine under Short-Circuit Fault," Energies, MDPI, vol. 9(11), pages 1-15, October.
    7. Lei Yu & Youtong Zhang & Wenqing Huang & Khaled Teffah, 2017. "A Fast-Acting Diagnostic Algorithm of Insulated Gate Bipolar Transistor Open Circuit Faults for Power Inverters in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingsong Wang & Shuangxia Niu, 2015. "Electromagnetic Design and Analysis of a Novel Fault-Tolerant Flux-Modulated Memory Machine," Energies, MDPI, vol. 8(8), pages 1-17, August.
    2. Luming Cheng & Yi Sui & Ping Zheng & Zuosheng Yin & Chuanze Wang, 2018. "Influence of Stator MMF Harmonics on the Utilization of Reluctance Torque in Six-Phase PMA-SynRM with FSCW," Energies, MDPI, vol. 11(1), pages 1-17, January.
    3. Hussein Zahr & Jinlin Gong & Eric Semail & Franck Scuiller, 2016. "Comparison of Optimized Control Strategies of a High-Speed Traction Machine with Five Phases and Bi-Harmonic Electromotive Force," Energies, MDPI, vol. 9(12), pages 1-19, November.
    4. Peixin Liang & Yulong Pei & Feng Chai & Kui Zhao, 2016. "Analytical Calculation of D - and Q -axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory," Energies, MDPI, vol. 9(8), pages 1-11, July.
    5. Michela Diana & Riccardo Ruffo & Paolo Guglielmi, 2018. "PWM Carrier Displacement in Multi-N-Phase Drives: An Additional Degree of Freedom to Reduce the DC-Link Stress," Energies, MDPI, vol. 11(2), pages 1-21, February.
    6. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Weiwei Gu & Xiaoyong Zhu & Li Quan & Yi Du, 2015. "Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications," Energies, MDPI, vol. 8(12), pages 1-13, December.
    8. Yiguang Chen & Bo Zhang, 2017. "Minimization of the Electromagnetic Torque Ripple Caused by the Coils Inter-Turn Short Circuit Fault in Dual-Redundancy Permanent Magnet Synchronous Motors," Energies, MDPI, vol. 10(11), pages 1-23, November.
    9. Ping Zheng & Fan Wu & Yu Lei & Yi Sui & Bin Yu, 2013. "Investigation of a Novel 24-Slot/14-Pole Six-Phase Fault-Tolerant Modular Permanent-Magnet In-Wheel Motor for Electric Vehicles," Energies, MDPI, vol. 6(10), pages 1-23, September.
    10. Yi Li & Feng Chai & Zaixin Song & Zongyang Li, 2017. "Analysis of Vibrations in Interior Permanent Magnet Synchronous Motors Considering Air-Gap Deformation," Energies, MDPI, vol. 10(9), pages 1-18, August.
    11. Piotr Mynarek & Janusz Kołodziej & Adrian Młot & Marcin Kowol & Marian Łukaniszyn, 2021. "Influence of a Winding Short-Circuit Fault on Demagnetization Risk and Local Magnetic Forces in V-Shaped Interior PMSM with Distributed and Concentrated Winding," Energies, MDPI, vol. 14(16), pages 1-16, August.
    12. Yiguang Chen & Yukai Yang & Yonghuan Shen, 2018. "Influence of Small Teeth on Vibration for Dual-Redundancy Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 11(9), pages 1-17, September.
    13. Li-Wei Shi & Bo Zhou, 2015. "Comparative Study of a Fault-Tolerant Multiphase Wound-Field Doubly Salient Machine for Electrical Actuators," Energies, MDPI, vol. 8(5), pages 1-21, April.
    14. Jian Zheng & Shoudao Huang & Fei Rong & Mingcheng Lye, 2018. "Six-Phase Space Vector PWM under Stator One-Phase Open-Circuit Fault Condition," Energies, MDPI, vol. 11(7), pages 1-21, July.
    15. Liang Xu & Wenxiang Zhao & Guohai Liu, 2019. "Improved SVPWM Fault-Tolerant Control Strategy for Five-Phase Permanent-Magnet Motor," Energies, MDPI, vol. 12(24), pages 1-15, December.
    16. Qiwu Luo & Jian Zheng & Yichuang Sun & Lijun Yang, 2018. "Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression," Energies, MDPI, vol. 11(10), pages 1-16, September.
    17. Jing Zhao & Wei Liu & Bin Li & Xiangdong Liu & Congzhe Gao & Zhongxin Gu, 2015. "Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor," Energies, MDPI, vol. 8(9), pages 1-31, September.
    18. Xing Liu & Jinhua Du & Deliang Liang, 2016. "Analysis and Speed Ripple Mitigation of a Space Vector Pulse Width Modulation-Based Permanent Magnet Synchronous Motor with a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 9(11), pages 1-15, November.
    19. Chengming Zhang & Qingbo Guo & Liyi Li & Mingyi Wang & Tiecheng Wang, 2017. "System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System," Energies, MDPI, vol. 10(12), pages 1-27, December.
    20. Robles, Endika & Fernandez, Markel & Andreu, Jon & Ibarra, Edorta & Zaragoza, Jordi & Ugalde, Unai, 2022. "Common-mode voltage mitigation in multiphase electric motor drive systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12342-12838:d:58713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.