IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1508-d151662.html
   My bibliography  Save this article

A New Diagnostic Algorithm for Multiple IGBTs Open Circuit Faults by the Phase Currents for Power Inverter in Electric Vehicles

Author

Listed:
  • Hongqian Wei

    (Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China)

  • Youtong Zhang

    (Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China)

  • Lei Yu

    (Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China)

  • Mengzhu Zhang

    (National Lab of Auto Performance and Emission Test, Beijing Institute of Technology, Beijing 100081, China)

  • Khaled Teffah

    (Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China)

Abstract

In order to simplify the application and improve diagnostic speed of the diagnostics, a novel method to diagnose multiple open circuit faults in insulated gate bipolar transistors (IGBTs) by three-phase currents for power inverter in electric vehicles is presented. The summation of currents with semi-period phase-difference is described in diagnostic variables with exploration of the current information in faulty condition. In contrast with plentiful existing methods which rely on the motor models and control parameters, this algorithm merely requires phase currents. Meanwhile, the normalized way based on the absolute phase currents and variable parameter moving average method are applied to improve the diagnostic speed and independence of load variation, which contributes to the real-time application in the electric vehicles. Experimental results, using a vector-controlled permanent magnet synchronous motor (PMSM) and digital signal processor MC56F8346, are presented to verify the algorithm effectiveness, showing many features, such as applicability for multiple open circuit faults, well-robustness against false alarms, briefness and agility for the diagnosis function.

Suggested Citation

  • Hongqian Wei & Youtong Zhang & Lei Yu & Mengzhu Zhang & Khaled Teffah, 2018. "A New Diagnostic Algorithm for Multiple IGBTs Open Circuit Faults by the Phase Currents for Power Inverter in Electric Vehicles," Energies, MDPI, vol. 11(6), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1508-:d:151662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Zhao & Xu Gao & Bin Li & Xiangdong Liu & Xing Guan, 2015. "Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 8(11), pages 1-29, November.
    2. Teng, Fei & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Zeng, Pingliang & Strbac, Goran, 2017. "Challenges on primary frequency control and potential solution from EVs in the future GB electricity system," Applied Energy, Elsevier, vol. 194(C), pages 353-362.
    3. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    4. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    5. Ying-Yi Hong & Yan-Hung Wei & Yung-Ruei Chang & Yih-Der Lee & Pang-Wei Liu, 2014. "Fault Detection and Location by Static Switches in Microgrids Using Wavelet Transform and Adaptive Network-Based Fuzzy Inference System," Energies, MDPI, vol. 7(4), pages 1-18, April.
    6. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    7. Lei Yu & Youtong Zhang & Wenqing Huang & Khaled Teffah, 2017. "A Fast-Acting Diagnostic Algorithm of Insulated Gate Bipolar Transistor Open Circuit Faults for Power Inverters in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.
    8. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    9. Lei Yu & Youtong Zhang & Wenqing Huang, 2017. "Accurate and Efficient Torque Control of an Interior Permanent Magnet Synchronous Motor in Electric Vehicles Based on Hall-Effect Sensors," Energies, MDPI, vol. 10(3), pages 1-15, March.
    10. Zixia Sang & Chengxiong Mao & Jiming Lu & Dan Wang, 2013. "Analysis and Simulation of Fault Characteristics of Power Switch Failures in Distribution Electronic Power Transformers," Energies, MDPI, vol. 6(8), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan Yanghong & Zhang Haixia & Zhou Ye, 2018. "A Simple-to-Implement Fault Diagnosis Method for Open Switch Fault in Wind System PMSG Drives without Threshold Setting," Energies, MDPI, vol. 11(10), pages 1-18, September.
    2. Chenyun Wu & Rabia Sehab & Ahmad Akrad & Cristina Morel, 2022. "Fault Diagnosis Methods and Fault Tolerant Control Strategies for the Electric Vehicle Powertrains," Energies, MDPI, vol. 15(13), pages 1-7, July.
    3. Sid-Ali Amamra & Yashraj Tripathy & Anup Barai & Andrew D. Moore & James Marco, 2020. "Electric Vehicle Battery Performance Investigation Based on Real World Current Harmonics," Energies, MDPI, vol. 13(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naoui Mohamed & Flah Aymen & Abdullah Altamimi & Zafar A. Khan & Sbita Lassaad, 2022. "Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    2. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    3. Jianjun Hu & Lingling Zheng & Meixia Jia & Yi Zhang & Tao Pang, 2018. "Optimization and Model Validation of Operation Control Strategies for a Novel Dual-Motor Coupling-Propulsion Pure Electric Vehicle," Energies, MDPI, vol. 11(4), pages 1-14, March.
    4. Zhou, Wenbin & Cleaver, Christopher J. & Dunant, Cyrille F. & Allwood, Julian M. & Lin, Jianguo, 2023. "Cost, range anxiety and future electricity supply: A review of how today's technology trends may influence the future uptake of BEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    6. Erika Pierri & Valentina Cirillo & Thomas Vietor & Marco Sorrentino, 2021. "Adopting a Conversion Design Approach to Maximize the Energy Density of Battery Packs in Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-24, March.
    7. Dorin Petreus & Radu Etz & Toma Patarau & Ionut Ciocan, 2020. "Comprehensive Analysis of a High-Power Density Phase-Shift Full Bridge Converter Highlighting the Effects of the Parasitic Capacitances," Energies, MDPI, vol. 13(6), pages 1-20, March.
    8. Yu, Xiao & Sandhu, Navjot S. & Yang, Zhenyi & Zheng, Ming, 2020. "Suitability of energy sources for automotive application – A review," Applied Energy, Elsevier, vol. 271(C).
    9. Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Miroslava Mikušová & Szymon Wiśniewski, 2021. "Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland," Energies, MDPI, vol. 14(13), pages 1-24, June.
    10. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Khairy Sayed & Abdulaziz Almutairi & Naif Albagami & Omar Alrumayh & Ahmed G. Abo-Khalil & Hedra Saleeb, 2022. "A Review of DC-AC Converters for Electric Vehicle Applications," Energies, MDPI, vol. 15(3), pages 1-32, February.
    12. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    13. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    14. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    15. Li Feng & Ke Zhang & Yi Chai & Shuiqing Xu & Zhimin Yang, 2017. "Iterative Learning Fault Estimation Design for Nonlinear System with Random Trial Length," Complexity, Hindawi, vol. 2017, pages 1-9, November.
    16. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    17. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    18. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    19. Ru-Jen Lin & Rong-Huei Chen & Thao-Minh Ho, 2013. "Market Demand, Green Innovation, and Firm Performance: Evidence from Hybrid Vehicle Industry," Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management,, ToKnowPress.
    20. Chen, Xu & Li, Mince & Chen, Zonghai, 2023. "Meta rule-based energy management strategy for battery/supercapacitor hybrid electric vehicles," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1508-:d:151662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.