IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i7p4316-4341d37856.html
   My bibliography  Save this article

A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances

Author

Listed:
  • Xuezhe Wei

    (Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
    College of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Zhenshi Wang

    (Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
    College of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Haifeng Dai

    (Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
    College of Automotive Studies, Tongji University, Shanghai 201804, China)

Abstract

Strongly coupled magnetic resonance (SCMR), proposed by researchers at MIT in 2007, attracted the world’s attention by virtue of its mid-range, non-radiative and high-efficiency power transfer. In this paper, current developments and research progress in the SCMR area are presented. Advantages of SCMR are analyzed by comparing it with the other wireless power transfer (WPT) technologies, and different analytic principles of SCMR are elaborated in depth and further compared. The hot research spots, including system architectures, frequency splitting phenomena, impedance matching and optimization designs are classified and elaborated. Finally, current research directions and development trends of SCMR are discussed.

Suggested Citation

  • Xuezhe Wei & Zhenshi Wang & Haifeng Dai, 2014. "A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Energies, MDPI, vol. 7(7), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:7:p:4316-4341:d:37856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/7/4316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/7/4316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Villa, Juan Luis & Sallán, Jesús & Llombart, Andrés & Sanz, José Fco, 2009. "Design of a high frequency Inductively Coupled Power Transfer system for electric vehicle battery charge," Applied Energy, Elsevier, vol. 86(3), pages 355-363, March.
    2. Giovanni Puccetti & Ugo Reggiani & Leonardo Sandrolini, 2013. "Experimental Analysis of Wireless Power Transmission with Spiral Resonators," Energies, MDPI, vol. 6(11), pages 1-10, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Maciej Stankiewicz & Agnieszka Choroszucho, 2021. "Comparison of the Efficiency and Load Power in Periodic Wireless Power Transfer Systems with Circular and Square Planar Coils," Energies, MDPI, vol. 14(16), pages 1-24, August.
    2. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    3. Barman, Surajit Das & Reza, Ahmed Wasif & Kumar, Narendra & Karim, Md. Ershadul & Munir, Abu Bakar, 2015. "Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1525-1552.
    4. Xin Dai & Xiaofei Li & Yanling Li & Pengqi Deng & Chunsen Tang, 2017. "A Maximum Power Transfer Tracking Method for WPT Systems with Coupling Coefficient Identification Considering Two-Value Problem," Energies, MDPI, vol. 10(10), pages 1-13, October.
    5. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    6. Alicia Triviño-Cabrera & José A. Aguado Sánchez, 2018. "A Review on the Fundamentals and Practical Implementation Details of Strongly Coupled Magnetic Resonant Technology for Wireless Power Transfer," Energies, MDPI, vol. 11(10), pages 1-20, October.
    7. Sabriansyah Rizqika Akbar & Eko Setiawan & Takuya Hirata & Ichijo Hodaka, 2023. "Optimal Wireless Power Transfer Circuit without a Capacitor on the Secondary Side," Energies, MDPI, vol. 16(6), pages 1-16, March.
    8. Shaoteng Zhang & Jinbin Zhao & Yuebao Wu & Ling Mao & Jiongyuan Xu & Jiajun Chen, 2020. "Analysis and Implementation of Inverter Wide-Range Soft Switching in WPT System Based on Class E Inverter," Energies, MDPI, vol. 13(19), pages 1-15, October.
    9. Javier Serrano & Jesús Acero & Rafael Alonso & Claudio Carretero & Ignacio Lope & José Miguel Burdío, 2016. "Design and Implementation of a Test-Bench for Efficiency Measurement of Domestic Induction Heating Appliances," Energies, MDPI, vol. 9(8), pages 1-11, August.
    10. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    11. Longzhao Sun & Houjun Tang & Yingyi Zhang, 2015. "Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System," Energies, MDPI, vol. 8(9), pages 1-12, September.
    12. Eteng, Akaa Agbaeze & Rahim, Sharul Kamal Abdul & Leow, Chee Yen & Jayaprakasam, Suhanya & Chew, Beng Wah, 2017. "Low-power near-field magnetic wireless energy transfer links: A review of architectures and design approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 486-505.
    13. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    14. Lantao Huang & Jiahao Zou & Yihan Zhou & Yan Hong & Jing Zhang & Zinan Ding, 2019. "Effect of Vertical Metal Plate on Transfer Efficiency of the Wireless Power Transfer System," Energies, MDPI, vol. 12(19), pages 1-15, October.
    15. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    16. Zhenshi Wang & Xuezhe Wei & Haifeng Dai, 2015. "Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles," Energies, MDPI, vol. 9(1), pages 1-18, December.
    17. Xin Liu & Tianfeng Wang & Xijun Yang & Nan Jin & Houjun Tang, 2017. "Analysis and Design of a Wireless Power Transfer System with Dual Active Bridges," Energies, MDPI, vol. 10(10), pages 1-20, October.
    18. Sun-Han Hwang & Chung G. Kang & Yong-Ho Son & Byung-Jun Jang, 2015. "Software-Based Wireless Power Transfer Platform for Various Power Control Experiments," Energies, MDPI, vol. 8(8), pages 1-13, July.
    19. Jacek Maciej Stankiewicz & Agnieszka Choroszucho, 2021. "Efficiency of the Wireless Power Transfer System with Planar Coils in the Periodic and Aperiodic Systems," Energies, MDPI, vol. 15(1), pages 1-27, December.
    20. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.
    21. Cheng Jiang & Yue Sun & Zhihui Wang & Chunsen Tang, 2018. "Multi-Load Mode Analysis for Electric Vehicle Wireless Supply System," Energies, MDPI, vol. 11(8), pages 1-11, July.
    22. Colin Sokol Kuka & Yihua Hu & Quan Xu & James Chandler & Mohammed Alkahtani, 2021. "A Novel True Random Number Generator in Near Field Communication as Memristive Wireless Power Transmission," J, MDPI, vol. 4(4), pages 1-20, November.
    23. Zhenshi Wang & Xuezhe Wei, 2015. "Design Considerations for Wireless Charging Systems with an Analysis of Batteries," Energies, MDPI, vol. 8(10), pages 1-20, September.
    24. Libin Yang & Ming Zong & Chunlai Li, 2021. "Voltage-Gain Design and Efficiency Optimization of Series/Series-Parallel Inductive Power Transfer System Considering Misalignment Issue," Energies, MDPI, vol. 14(11), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Puccetti & Christopher J. Stevens & Ugo Reggiani & Leonardo Sandrolini, 2015. "Experimental and Numerical Investigation of Termination Impedance Effects in Wireless Power Transfer via Metamaterial," Energies, MDPI, vol. 8(3), pages 1-14, March.
    2. Alexander Sutor & Martin Heining & Rainer Buchholz, 2019. "A Class-E Amplifier for a Loosely Coupled Inductive Power Transfer System with Multiple Receivers," Energies, MDPI, vol. 12(6), pages 1-15, March.
    3. De Filippo, Giovanni & Marano, Vincenzo & Sioshansi, Ramteen, 2014. "Simulation of an electric transportation system at The Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1686-1691.
    4. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Yao Pei & Yann Le Bihan & Mohamed Bensetti & Lionel Pichon, 2021. "Comparison of Coupling Coils for Static Inductive Power-Transfer Systems Taking into Account Sources of Uncertainty," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    6. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    7. Longzhao Sun & Houjun Tang & Yingyi Zhang, 2015. "Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System," Energies, MDPI, vol. 8(9), pages 1-12, September.
    8. Wassim Kabbara & Mohamed Bensetti & Tanguy Phulpin & Antoine Caillierez & Serge Loudot & Daniel Sadarnac, 2022. "A Control Strategy to Avoid Drop and Inrush Currents during Transient Phases in a Multi-Transmitters DIPT System," Energies, MDPI, vol. 15(8), pages 1-18, April.
    9. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    10. Ilaria Liorni & Oriano Bottauscio & Roberta Guilizzoni & Peter Ankarson & Jorge Bruna & Arya Fallahi & Stuart Harmon & Mauro Zucca, 2020. "Assessment of Exposure to Electric Vehicle Inductive Power Transfer Systems: Experimental Measurements and Numerical Dosimetry," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    11. Chen, Feng & Taylor, Nathaniel & Kringos, Nicole, 2015. "Electrification of roads: Opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 109-119.
    12. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    13. Linlin Tan & Kamal Eldin Idris Elnail & Minghao Ju & Xueliang Huang, 2019. "Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs," Energies, MDPI, vol. 12(11), pages 1-20, June.
    14. Kalwar, Kafeel Ahmed & Aamir, Muhammad & Mekhilef, Saad, 2015. "Inductively coupled power transfer (ICPT) for electric vehicle charging – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 462-475.
    15. Charles Moorey & William Holderbaum & Ben Potter, 2015. "Investigation of High-Efficiency Wireless Power Transfer Criteria of Resonantly-Coupled Loops and Dipoles through Analysis of the Figure of Merit," Energies, MDPI, vol. 8(10), pages 1-21, October.
    16. Javier Serrano & Jesús Acero & Rafael Alonso & Claudio Carretero & Ignacio Lope & José Miguel Burdío, 2016. "Design and Implementation of a Test-Bench for Efficiency Measurement of Domestic Induction Heating Appliances," Energies, MDPI, vol. 9(8), pages 1-11, August.
    17. Kalantar, M. & Mousavi G., S.M., 2010. "Posicast control within feedback structure for a DC-DC single ended primary inductor converter in renewable energy applications," Applied Energy, Elsevier, vol. 87(10), pages 3110-3114, October.
    18. Sun-Han Hwang & Chung G. Kang & Yong-Ho Son & Byung-Jun Jang, 2015. "Software-Based Wireless Power Transfer Platform for Various Power Control Experiments," Energies, MDPI, vol. 8(8), pages 1-13, July.
    19. Kamal Eldin Idris Elnail & Xueliang Huang & Chen Xiao & Linlin Tan & Xu Haozhe, 2018. "Core Structure and Electromagnetic Field Evaluation in WPT Systems for Charging Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    20. Frechter, Yotam & Kuperman, Alon, 2020. "Analysis and design of inductive wireless power transfer link for feedback-less power delivery to enclosed compartment," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:7:p:4316-4341:d:37856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.