IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2911-d794826.html
   My bibliography  Save this article

A Control Strategy to Avoid Drop and Inrush Currents during Transient Phases in a Multi-Transmitters DIPT System

Author

Listed:
  • Wassim Kabbara

    (Laboratoire de Génie Electrique et Electronique de Paris, CNRS, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette, France
    Laboratoire de Génie Electrique et Electronique de Paris, CNRS, Sorbonne Université, 75252 Paris, France
    Renault, 1 Avenue du Golf, 78084 Guyancourt, France)

  • Mohamed Bensetti

    (Laboratoire de Génie Electrique et Electronique de Paris, CNRS, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette, France
    Laboratoire de Génie Electrique et Electronique de Paris, CNRS, Sorbonne Université, 75252 Paris, France)

  • Tanguy Phulpin

    (Laboratoire de Génie Electrique et Electronique de Paris, CNRS, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette, France
    Laboratoire de Génie Electrique et Electronique de Paris, CNRS, Sorbonne Université, 75252 Paris, France)

  • Antoine Caillierez

    (Renault, 1 Avenue du Golf, 78084 Guyancourt, France)

  • Serge Loudot

    (Renault, 1 Avenue du Golf, 78084 Guyancourt, France)

  • Daniel Sadarnac

    (Laboratoire de Génie Electrique et Electronique de Paris, CNRS, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette, France
    Laboratoire de Génie Electrique et Electronique de Paris, CNRS, Sorbonne Université, 75252 Paris, France)

Abstract

Electrical Vehicles (EVs) have gained popularity in recent years in the automotive field. They are seen as a way to reduce the CO 2 footprint of vehicles. Although EVs have witnessed significant advancement in recent years, they still have two major setbacks: limited autonomy and long recharging time. Dynamic Inductive Power Transfer (DIPT) systems permit charging EVs while driving, provide unlimited autonomy, and eliminate stationary charging time and lower battery dependency. Multiple transmitters are required to achieve DIPT; thus, dealing with transient phases is essential because every time a receiver crosses over from one transmitter to another, it experiences a new transient phase. This article presents a novel control strategy for multi-transmitter DIPT systems that ensures a continuous and stable power transfer to a moving EV. The proposed control strategy eliminates drop and inrush currents during transient phases. The control integrates a soft start feature and a degraded operating mode at a predefined maximum current value. The studied structure is a symmetrical series–series compensation network. Each transmitter coil is driven by a variable frequency inverter (around 85 kHz) to ensure Zero Phase Angle mode. The control strategy was numerically validated using MATLAB Simulink and then tested experimentally. Results show a relatively low power disruption after applying the proposed control during transmitter sequencing.

Suggested Citation

  • Wassim Kabbara & Mohamed Bensetti & Tanguy Phulpin & Antoine Caillierez & Serge Loudot & Daniel Sadarnac, 2022. "A Control Strategy to Avoid Drop and Inrush Currents during Transient Phases in a Multi-Transmitters DIPT System," Energies, MDPI, vol. 15(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2911-:d:794826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2911/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Villa, Juan Luis & Sallán, Jesús & Llombart, Andrés & Sanz, José Fco, 2009. "Design of a high frequency Inductively Coupled Power Transfer system for electric vehicle battery charge," Applied Energy, Elsevier, vol. 86(3), pages 355-363, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou Ruhan & Nurulafiqah Nadzirah Binti Mansor & Hazlee Azil Illias, 2023. "Identification of Inrush Current Using a GSA-BP Network," Energies, MDPI, vol. 16(5), pages 1-22, February.
    2. Valentin Rigot & Tanguy Phulpin & Jihen Sakly & Daniel Sadarnac, 2022. "A New 7 kW Air-Core Transformer at 1.5 MHz for Embedded Isolated DC/DC Application," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuezhe Wei & Zhenshi Wang & Haifeng Dai, 2014. "A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Energies, MDPI, vol. 7(7), pages 1-26, July.
    2. Alexander Sutor & Martin Heining & Rainer Buchholz, 2019. "A Class-E Amplifier for a Loosely Coupled Inductive Power Transfer System with Multiple Receivers," Energies, MDPI, vol. 12(6), pages 1-15, March.
    3. De Filippo, Giovanni & Marano, Vincenzo & Sioshansi, Ramteen, 2014. "Simulation of an electric transportation system at The Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1686-1691.
    4. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Yao Pei & Yann Le Bihan & Mohamed Bensetti & Lionel Pichon, 2021. "Comparison of Coupling Coils for Static Inductive Power-Transfer Systems Taking into Account Sources of Uncertainty," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    6. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    7. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    8. Ilaria Liorni & Oriano Bottauscio & Roberta Guilizzoni & Peter Ankarson & Jorge Bruna & Arya Fallahi & Stuart Harmon & Mauro Zucca, 2020. "Assessment of Exposure to Electric Vehicle Inductive Power Transfer Systems: Experimental Measurements and Numerical Dosimetry," Sustainability, MDPI, vol. 12(11), pages 1-25, June.
    9. Chen, Feng & Taylor, Nathaniel & Kringos, Nicole, 2015. "Electrification of roads: Opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 109-119.
    10. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    11. Linlin Tan & Kamal Eldin Idris Elnail & Minghao Ju & Xueliang Huang, 2019. "Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs," Energies, MDPI, vol. 12(11), pages 1-20, June.
    12. Kalwar, Kafeel Ahmed & Aamir, Muhammad & Mekhilef, Saad, 2015. "Inductively coupled power transfer (ICPT) for electric vehicle charging – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 462-475.
    13. Giovanni Puccetti & Christopher J. Stevens & Ugo Reggiani & Leonardo Sandrolini, 2015. "Experimental and Numerical Investigation of Termination Impedance Effects in Wireless Power Transfer via Metamaterial," Energies, MDPI, vol. 8(3), pages 1-14, March.
    14. Kalantar, M. & Mousavi G., S.M., 2010. "Posicast control within feedback structure for a DC-DC single ended primary inductor converter in renewable energy applications," Applied Energy, Elsevier, vol. 87(10), pages 3110-3114, October.
    15. Kamal Eldin Idris Elnail & Xueliang Huang & Chen Xiao & Linlin Tan & Xu Haozhe, 2018. "Core Structure and Electromagnetic Field Evaluation in WPT Systems for Charging Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    16. Frechter, Yotam & Kuperman, Alon, 2020. "Analysis and design of inductive wireless power transfer link for feedback-less power delivery to enclosed compartment," Applied Energy, Elsevier, vol. 278(C).
    17. Zhang, Jian & Tang, Tie-Qiao & Yan, Yadan & Qu, Xiaobo, 2021. "Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging," Applied Energy, Elsevier, vol. 282(PA).
    18. Mohamed, Ahmed A.S. & Wood, Eric & Meintz, Andrew, 2021. "In-route inductive versus stationary conductive charging for shared automated electric vehicles: A university shuttle service," Applied Energy, Elsevier, vol. 282(PA).
    19. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    20. Venugopal, Prasanth & Shekhar, Aditya & Visser, Erwin & Scheele, Natalia & Chandra Mouli, Gautham Ram & Bauer, Pavol & Silvester, Sacha, 2018. "Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies," Applied Energy, Elsevier, vol. 212(C), pages 1226-1239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2911-:d:794826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.