IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i11p7746-7772d42613.html
   My bibliography  Save this article

Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque

Author

Listed:
  • Zili Zhang

    (Department of Civil Engineering, Aalborg University, Sofiendalsvej 11, 9200 Aalborg SV, Denmark)

  • Søren R. K. Nielsen

    (Department of Civil Engineering, Aalborg University, Sofiendalsvej 11, 9200 Aalborg SV, Denmark)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, Pontoppidanstraede 101, 9220 Aalborg East, Denmark)

  • Dao Zhou

    (Department of Energy Technology, Aalborg University, Pontoppidanstraede 101, 9220 Aalborg East, Denmark)

Abstract

Lateral tower vibrations of offshore wind turbines are normally lightly damped, and large amplitude vibrations induced by wind and wave loads in this direction may significantly shorten the fatigue life of the tower. This paper proposes the modeling and control of lateral tower vibrations in offshore wind turbines using active generator torque. To implement the active control algorithm, both the mechanical and power electronic aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind turbine model with generator and pitch controllers is derived using the Euler–Lagrangian approach. The model displays important features of wind turbines, such as mixed moving frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain vibrations, as well as aerodynamic damping present in different modes of motions. The load transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the interaction between the generator torque and the lateral tower vibration are presented in a generalized manner. A three-dimensional rotational sampled turbulence field is generated and applied to the rotor, and the tower is excited by a first order wave load in the lateral direction. Next, a simple active control algorithm is proposed based on active generator torques with feedback from the measured lateral tower vibrations. A full-scale power converter configuration with a cascaded loop control structure is also introduced to produce the feedback control torque in real time. Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory) offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator are considered using the same time series for the wave and turbulence loadings. Results show that by using active generator torque control, lateral tower vibrations can be significantly mitigated for both gear-driven and direct-driven wind turbines, with modest influence on the smoothness of the power output from the generator.

Suggested Citation

  • Zili Zhang & Søren R. K. Nielsen & Frede Blaabjerg & Dao Zhou, 2014. "Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque," Energies, MDPI, vol. 7(11), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7746-7772:d:42613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/11/7746/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/11/7746/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asier Diaz De Corcuera & Aron Pujana-Arrese & Jose M. Ezquerra & Edurne Segurola & Joseba Landaluze, 2012. "H ∞ Based Control for Load Mitigation in Wind Turbines," Energies, MDPI, vol. 5(4), pages 1-30, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zili, 2022. "Vibration suppression of floating offshore wind turbines using electromagnetic shunt tuned mass damper," Renewable Energy, Elsevier, vol. 198(C), pages 1279-1295.
    2. Torres, Antonio & Gil, Javier & Plaza, Aitor & Aginaga, Jokin, 2024. "4P operational harmonic and blade vibration in wind turbines: A real case study of an active yaw system and a concrete tower," Renewable Energy, Elsevier, vol. 227(C).
    3. Jijian Lian & Yue Zhao & Chong Lian & Haijun Wang & Xiaofeng Dong & Qi Jiang & Huan Zhou & Junni Jiang, 2018. "Application of an Eddy Current-Tuned Mass Damper to Vibration Mitigation of Offshore Wind Turbines," Energies, MDPI, vol. 11(12), pages 1-18, November.
    4. Payam Aboutalebi & Fares M’zoughi & Izaskun Garrido & Aitor J. Garrido, 2021. "Performance Analysis on the Use of Oscillating Water Column in Barge-Based Floating Offshore Wind Turbines," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    5. Pim van der Male & Marco Vergassola & Karel N. van Dalen, 2020. "Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures," Energies, MDPI, vol. 13(19), pages 1-35, October.
    6. Piotr Brzeski & Mateusz Lazarek & Przemyslaw Perlikowski, 2020. "Influence of Variable Damping Coefficient on Efficiency of TMD with Inerter," Energies, MDPI, vol. 13(23), pages 1-14, November.
    7. Muhammad Moman Shahzad & Xun’an Zhang & Xinwei Wang, 2022. "Identification of Structural Damage and Damping Performance of a Mega-Subcontrolled Structural System (MSCSS) Subjected to Seismic Action," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
    8. Buckley, Tadhg & Watson, Phoebe & Cahill, Paul & Jaksic, Vesna & Pakrashi, Vikram, 2018. "Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction," Renewable Energy, Elsevier, vol. 120(C), pages 322-341.
    9. Fenglin Miao & Hongsheng Shi & Xiaoqing Zhang, 2015. "Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips," Energies, MDPI, vol. 8(10), pages 1-18, October.
    10. Abbas, Nikhar J. & Jasa, John & Zalkind, Daniel S. & Wright, Alan & Pao, Lucy, 2024. "Control co-design of a floating offshore wind turbine," Applied Energy, Elsevier, vol. 353(PB).
    11. Zuo, Haoran & Bi, Kaiming & Hao, Hong, 2020. "A state-of-the-art review on the vibration mitigation of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Chen, Bei & Hua, Xugang & Zhang, Zili & Nielsen, Søren R.K. & Chen, Zhengqing, 2021. "Active flutter control of the wind turbines using double-pitched blades," Renewable Energy, Elsevier, vol. 163(C), pages 2081-2097.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
    2. Yancai Xiao & Tieling Zhang & Zeyu Ding & Chunya Li, 2016. "The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters," Energies, MDPI, vol. 9(5), pages 1-17, May.
    3. Vincenzo Iannino & Valentina Colla & Mario Innocenti & Annamaria Signorini, 2017. "Design of a H ∞ Robust Controller with μ -Analysis for Steam Turbine Power Generation Applications," Energies, MDPI, vol. 10(7), pages 1-31, July.
    4. Yuan, Yuan & Chen, Xu & Tang, J., 2020. "Multivariable robust blade pitch control design to reject periodic loads on wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 329-341.
    5. Jau-Woei Perng & Guan-Yan Chen & Shan-Chang Hsieh, 2014. "Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems," Energies, MDPI, vol. 7(1), pages 1-19, January.
    6. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    7. Taesu Jeon & Dongmyoung Kim & Yuan Song & Insu Paek, 2021. "Design and Validation of Demanded Power Point Tracking Control Algorithm for MIMO Controllers in Wind Turbines," Energies, MDPI, vol. 14(18), pages 1-18, September.
    8. Ning Zhang & Wei Gu & Haojun Yu & Wei Liu, 2013. "Application of Coordinated SOFC and SMES Robust Control for Stabilizing Tie-Line Power," Energies, MDPI, vol. 6(4), pages 1-16, April.
    9. Jongmin Cheon & Jinwook Kim & Joohoon Lee & Kichang Lee & Youngkiu Choi, 2019. "Development of Hardware-in-the-Loop-Simulation Testbed for Pitch Control System Performance Test," Energies, MDPI, vol. 12(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7746-7772:d:42613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.