IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i8p3033-3050d19408.html
   My bibliography  Save this article

Power Control Design for Variable-Speed Wind Turbines

Author

Listed:
  • Yolanda Vidal

    (Control Dynamics and Applications Research Group (CoDAlab), Barcelona College of Industrial Engineering, Polytechnic University of Catalonia, Comte d’Urgell, 187, Barcelona 08036, Spain)

  • Leonardo Acho

    (Control Dynamics and Applications Research Group (CoDAlab), Barcelona College of Industrial Engineering, Polytechnic University of Catalonia, Comte d’Urgell, 187, Barcelona 08036, Spain)

  • Ningsu Luo

    (Modal Intervals and Control Engineering Research Group, Department of Electrical Engineering, Electronics and Automatic Control, Institute of Informatics and Applications, University of Girona, Campus Montilivi, P-IV, Girona 17071, Spain)

  • Mauricio Zapateiro

    (Control Dynamics and Applications Research Group (CoDAlab), Barcelona College of Industrial Engineering, Polytechnic University of Catalonia, Comte d’Urgell, 187, Barcelona 08036, Spain)

  • Francesc Pozo

    (Control Dynamics and Applications Research Group (CoDAlab), Barcelona College of Industrial Engineering, Polytechnic University of Catalonia, Comte d’Urgell, 187, Barcelona 08036, Spain)

Abstract

This paper considers power generation control in variable-speed variable-pitch horizontal-axis wind turbines operating at high wind speeds. A dynamic chattering torque control and a proportional integral (PI) pitch control strategy are proposed and validated using the National Renewable Energy Laboratory wind turbine simulator FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code. Validation results show that the proposed controllers are effective for power regulation and demonstrate high-performances for all other state variables (turbine and generator rotational speeds; and smooth and adequate evolution of the control variables) for turbulent wind conditions. To highlight the improvements of the provided method, the proposed controllers are compared to relevant previously published studies.

Suggested Citation

  • Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:8:p:3033-3050:d:19408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/8/3033/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/8/3033/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asier Diaz De Corcuera & Aron Pujana-Arrese & Jose M. Ezquerra & Edurne Segurola & Joseba Landaluze, 2012. "H ∞ Based Control for Load Mitigation in Wind Turbines," Energies, MDPI, vol. 5(4), pages 1-30, April.
    2. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    3. Hassan, H.M. & ElShafei, A.L. & Farag, W.A. & Saad, M.S., 2012. "A robust LMI-based pitch controller for large wind turbines," Renewable Energy, Elsevier, vol. 44(C), pages 63-71.
    4. Kusiak, Andrew & Zhang, Zijun, 2012. "Control of wind turbine power and vibration with a data-driven approach," Renewable Energy, Elsevier, vol. 43(C), pages 73-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonardo Acho, 2019. "A Proportional Plus a Hysteretic Term Control Design: A Throttle Experimental Emulation to Wind Turbines Pitch Control," Energies, MDPI, vol. 12(10), pages 1-14, May.
    2. Nikita Tomin, 2023. "Robust Reinforcement Learning-Based Multiple Inputs and Multiple Outputs Controller for Wind Turbines," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    3. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    4. Jau-Woei Perng & Guan-Yan Chen & Shan-Chang Hsieh, 2014. "Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems," Energies, MDPI, vol. 7(1), pages 1-19, January.
    5. Davila-Vilchis, J.M. & Mishra, R.S., 2014. "Performance of a hydrokinetic energy system using an axial-flux permanent magnet generator," Energy, Elsevier, vol. 65(C), pages 631-638.
    6. Oscar Barambones & Jose A. Cortajarena & Patxi Alkorta & Jose M. Gonzalez De Durana, 2014. "A Real-Time Sliding Mode Control for a Wind Energy System Based on a Doubly Fed Induction Generator," Energies, MDPI, vol. 7(10), pages 1-22, October.
    7. Qingsong Wang & Shuangxia Niu, 2015. "Electromagnetic Design and Analysis of a Novel Fault-Tolerant Flux-Modulated Memory Machine," Energies, MDPI, vol. 8(8), pages 1-17, August.
    8. Li, Hui & Yang, Chao & Hu, Yaogang & Liao, Xinglin & Zeng, Zheng & Zhe, Chen, 2016. "An improved reduced-order model of an electric pitch drive system for wind turbine control system design and simulation," Renewable Energy, Elsevier, vol. 93(C), pages 188-200.
    9. Dongmyoung Kim & Taesu Jeon & Insu Paek & Wirachai Roynarin & Boonyang Plangklang & Bayasgalan Dugarjav, 2023. "A Study on the Improved Power Control Algorithm for a 100 kW Wind Turbine," Energies, MDPI, vol. 16(2), pages 1-15, January.
    10. Yolanda Vidal & Christian Tutivén & José Rodellar & Leonardo Acho, 2015. "Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller with a Disturbance Compensator," Energies, MDPI, vol. 8(5), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    2. Yuan, Yuan & Chen, Xu & Tang, J., 2020. "Multivariable robust blade pitch control design to reject periodic loads on wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 329-341.
    3. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    4. MacPhee, David W. & Beyene, Asfaw, 2015. "Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor," Energy, Elsevier, vol. 90(P1), pages 1055-1065.
    5. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    6. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    7. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    8. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    9. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    10. Nikita Tomin, 2023. "Robust Reinforcement Learning-Based Multiple Inputs and Multiple Outputs Controller for Wind Turbines," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    11. Mseddi, Amina & Le Ballois, Sandrine & Aloui, Helmi & Vido, Lionel, 2019. "Robust control of a wind conversion system based on a hybrid excitation synchronous generator: A comparison between H∞ and CRONE controllers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 453-476.
    12. Yanwei Jing & Hexu Sun & Lei Zhang & Tieling Zhang, 2017. "Variable Speed Control of Wind Turbines Based on the Quasi-Continuous High-Order Sliding Mode Method," Energies, MDPI, vol. 10(10), pages 1-21, October.
    13. Chen, Jiahao & Hu, Zhiqiang & Liu, Geliang & Wan, Decheng, 2019. "Coupled aero-hydro-servo-elastic methods for floating wind turbines," Renewable Energy, Elsevier, vol. 130(C), pages 139-153.
    14. Ganjefar, Soheil & Mohammadi, Ali, 2016. "Variable speed wind turbines with maximum power extraction using singular perturbation theory," Energy, Elsevier, vol. 106(C), pages 510-519.
    15. Yancai Xiao & Tieling Zhang & Zeyu Ding & Chunya Li, 2016. "The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters," Energies, MDPI, vol. 9(5), pages 1-17, May.
    16. Vincenzo Iannino & Valentina Colla & Mario Innocenti & Annamaria Signorini, 2017. "Design of a H ∞ Robust Controller with μ -Analysis for Steam Turbine Power Generation Applications," Energies, MDPI, vol. 10(7), pages 1-31, July.
    17. Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.
    18. Elnaggar, M. & Abdel Fattah, H.A. & Elshafei, A.L., 2014. "Maximum power tracking in WECS (Wind energy conversion systems) via numerical and stochastic approaches," Energy, Elsevier, vol. 74(C), pages 651-661.
    19. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    20. Yuan, Yuan & Tang, J., 2017. "Adaptive pitch control of wind turbine for load mitigation under structural uncertainties," Renewable Energy, Elsevier, vol. 105(C), pages 483-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:8:p:3033-3050:d:19408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.