IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p2031-d234797.html
   My bibliography  Save this article

Development of Hardware-in-the-Loop-Simulation Testbed for Pitch Control System Performance Test

Author

Listed:
  • Jongmin Cheon

    (Korea Electrotechnology Research Institute (KERI), 12, Bulmosan-ro 10, Seongsan-gu, Changwon-si 51543, Korea
    Department of Electrical Engineering, Pusan National University, Busan 46241, Korea)

  • Jinwook Kim

    (Korea Electrotechnology Research Institute (KERI), 12, Bulmosan-ro 10, Seongsan-gu, Changwon-si 51543, Korea)

  • Joohoon Lee

    (Korea Electrotechnology Research Institute (KERI), 12, Bulmosan-ro 10, Seongsan-gu, Changwon-si 51543, Korea)

  • Kichang Lee

    (Korea Electrotechnology Research Institute (KERI), 12, Bulmosan-ro 10, Seongsan-gu, Changwon-si 51543, Korea)

  • Youngkiu Choi

    (Department of Electrical Engineering, Pusan National University, Busan 46241, Korea)

Abstract

This paper deals with the development of a wind turbine pitch control system and the construction of a Hardware-in-the-Loop-Simulation (HILS) testbed for the performance test of the pitch control system. When the wind speed exceeds the rated wind speed, the wind turbine pitch controller adjusts the blade pitch angles collectively to ensure that the rotor speed maintains the rated rotor speed. The pitch controller with the individual pitch control function can add individual pitch angles into the collective pitch angles to reduce the mechanical load applied to the blade periodically due to wind shear. Large wind turbines often experience mechanical loads caused by wind shear phenomena. To verify the performance of the pitch control system before applying it to an actual wind turbine, the pitch control system is tested on the HILS testbed, which acts like an actual wind turbine system. The testbed for evaluating the developed pitch control system consists of the pitch control system, a real-time unit for simulating the wind and the operations of the wind turbine, an operational computer with a human–machine interface, a load system for simulating the actual wind load applied to each blade, and a real pitch bearing. Through the several tests based on HILS test bed, how well the pitch controller performed the given roles for each area in the entire wind speed area from cut-in to cut-out wind speed can be shown.

Suggested Citation

  • Jongmin Cheon & Jinwook Kim & Joohoon Lee & Kichang Lee & Youngkiu Choi, 2019. "Development of Hardware-in-the-Loop-Simulation Testbed for Pitch Control System Performance Test," Energies, MDPI, vol. 12(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:2031-:d:234797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/2031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/2031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ching-Sung Wang & Mao-Hsiung Chiang, 2016. "A Novel Dynamic Co-Simulation Analysis for Overall Closed Loop Operation Control of a Large Wind Turbine," Energies, MDPI, vol. 9(8), pages 1-20, August.
    2. Raja M. Imran & D. M. Akbar Hussain & Bhawani Shanker Chowdhry, 2018. "Parameterized Disturbance Observer Based Controller to Reduce Cyclic Loads of Wind Turbine," Energies, MDPI, vol. 11(5), pages 1-13, May.
    3. Asier Diaz De Corcuera & Aron Pujana-Arrese & Jose M. Ezquerra & Edurne Segurola & Joseba Landaluze, 2012. "H ∞ Based Control for Load Mitigation in Wind Turbines," Energies, MDPI, vol. 5(4), pages 1-30, April.
    4. Sungsu Park & Yoonsu Nam, 2012. "Two LQRI based Blade Pitch Controls for Wind Turbines," Energies, MDPI, vol. 5(6), pages 1-19, June.
    5. Ching-Sung Wang & Mao-Hsiung Chiang, 2016. "A Novel Pitch Control System of a Large Wind Turbine Using Two-Degree-of-Freedom Motion Control with Feedback Linearization Control," Energies, MDPI, vol. 9(10), pages 1-18, September.
    6. Jau-Woei Perng & Guan-Yan Chen & Shan-Chang Hsieh, 2014. "Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems," Energies, MDPI, vol. 7(1), pages 1-19, January.
    7. Keshan He & Liangwen Qi & Liming Zheng & Yan Chen, 2018. "Combined Pitch and Trailing Edge Flap Control for Load Mitigation of Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-16, September.
    8. Yanwei Jing & Hexu Sun & Lei Zhang & Tieling Zhang, 2017. "Variable Speed Control of Wind Turbines Based on the Quasi-Continuous High-Order Sliding Mode Method," Energies, MDPI, vol. 10(10), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wei & Yusong Guo & Kai Hou & Kai Yuan & Yi Song & Hongjie Jia & Chongbo Sun, 2021. "Distributed Thermal Energy Storage Configuration of an Urban Electric and Heat Integrated Energy System Considering Medium Temperature Characteristics," Energies, MDPI, vol. 14(10), pages 1-34, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nejra Beganovic & Jackson G. Njiri & Dirk Söffker, 2018. "Reduction of Structural Loads in Wind Turbines Based on an Adapted Control Strategy Concerning Online Fatigue Damage Evaluation Models," Energies, MDPI, vol. 11(12), pages 1-15, December.
    2. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    3. Vincenzo Iannino & Valentina Colla & Mario Innocenti & Annamaria Signorini, 2017. "Design of a H ∞ Robust Controller with μ -Analysis for Steam Turbine Power Generation Applications," Energies, MDPI, vol. 10(7), pages 1-31, July.
    4. Arash E. Samani & Jeroen D. M. De Kooning & Nezmin Kayedpour & Narender Singh & Lieven Vandevelde, 2020. "The Impact of Pitch-To-Stall and Pitch-To-Feather Control on the Structural Loads and the Pitch Mechanism of a Wind Turbine," Energies, MDPI, vol. 13(17), pages 1-21, September.
    5. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    6. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    7. Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
    8. Taesu Jeon & Insu Paek, 2021. "Design and Verification of the LQR Controller Based on Fuzzy Logic for Large Wind Turbine," Energies, MDPI, vol. 14(1), pages 1-17, January.
    9. Xiaocong Li & Xin Chen, 2021. "A Multi-Index Feedback Linearization Control for a Buck-Boost Converter," Energies, MDPI, vol. 14(5), pages 1-14, March.
    10. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    11. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    12. Tang, Shize & Tian, De & Wu, Xiaoxuan & Huang, Mingyue & Deng, Ying, 2022. "Wind turbine load reduction based on 2DoF robust individual pitch control," Renewable Energy, Elsevier, vol. 183(C), pages 28-40.
    13. Yancai Xiao & Tieling Zhang & Zeyu Ding & Chunya Li, 2016. "The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters," Energies, MDPI, vol. 9(5), pages 1-17, May.
    14. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    15. Yuan, Yuan & Chen, Xu & Tang, J., 2020. "Multivariable robust blade pitch control design to reject periodic loads on wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 329-341.
    16. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    17. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    18. Yarong Zou & Wen Tan & Xingkang Jin & Zijian Wang, 2022. "An Active Disturbance Rejection Control of Large Wind Turbine Pitch Angle Based on Extremum-Seeking Algorithm," Energies, MDPI, vol. 15(8), pages 1-15, April.
    19. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    20. Md Rasel Sarkar & Sabariah Julai & Chong Wen Tong & Moslem Uddin & M.F. Romlie & GM Shafiullah, 2020. "Hybrid Pitch Angle Controller Approaches for Stable Wind Turbine Power under Variable Wind Speed," Energies, MDPI, vol. 13(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:2031-:d:234797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.