IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5195-d424048.html
   My bibliography  Save this article

Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures

Author

Listed:
  • Pim van der Male

    (Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands)

  • Marco Vergassola

    (Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands)

  • Karel N. van Dalen

    (Department of Engineering Structures, Delft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands)

Abstract

To meet the political goals regarding renewable energy production, offshore wind keeps expanding to waters with larger depths and harsher conditions, while the turbine size continues to grow and ever-larger foundation structures are required. This development can only be successful if further cuts in the levelized cost of energy are established. Regarding the design of the foundation structures, a particular challenge in this respect relates to the reduction of the total computational time required for the design. For both practical and commercial reasons, the decoupled modelling of offshore wind support structures finds a common application, especially during the preliminary design stage. This modelling approach aims at capturing the relevant characteristics of the different environment-structure interactions, while reducing the complexity as much as possible. This paper presents a comprehensive review of the state-of-the-art modelling approaches of environmental interactions with offshore wind support structures. In this respect, the primary focus is on the monopile foundation, as this concept is expected to remain the prominent solution in the years to come. Current challenges in the field are identified, considering as well the engineering practice and the insights obtained from code comparison studies and experimental validations. It is concluded that the decoupled analysis provides valuable modelling perspectives, in particular for the preliminary design stage. In the further development of the different modelling strategies, however, the trade-off with computational costs should always be kept in mind.

Suggested Citation

  • Pim van der Male & Marco Vergassola & Karel N. van Dalen, 2020. "Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures," Energies, MDPI, vol. 13(19), pages 1-35, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5195-:d:424048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Häfele, Jan & Hübler, Clemens & Gebhardt, Cristian Guillermo & Rolfes, Raimund, 2018. "A comprehensive fatigue load set reduction study for offshore wind turbines with jacket substructures," Renewable Energy, Elsevier, vol. 118(C), pages 99-112.
    2. Liu, Xiong & Lu, Cheng & Li, Gangqiang & Godbole, Ajit & Chen, Yan, 2017. "Effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines," Applied Energy, Elsevier, vol. 204(C), pages 1101-1114.
    3. Kim, Taewoo & Oh, Sejong & Yee, Kwanjung, 2015. "Improved actuator surface method for wind turbine application," Renewable Energy, Elsevier, vol. 76(C), pages 16-26.
    4. Zili Zhang & Søren R. K. Nielsen & Frede Blaabjerg & Dao Zhou, 2014. "Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque," Energies, MDPI, vol. 7(11), pages 1-27, November.
    5. Apostolos Tsouvalas, 2020. "Underwater Noise Emission Due to Offshore Pile Installation: A Review," Energies, MDPI, vol. 13(12), pages 1-41, June.
    6. Passon, Patrik, 2015. "Damage equivalent wind–wave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines," Renewable Energy, Elsevier, vol. 81(C), pages 723-736.
    7. Carswell, W. & Johansson, J. & Løvholt, F. & Arwade, S.R. & Madshus, C. & DeGroot, D.J. & Myers, A.T., 2015. "Foundation damping and the dynamics of offshore wind turbine monopiles," Renewable Energy, Elsevier, vol. 80(C), pages 724-736.
    8. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    9. Clemens Hübler & Wout Weijtjens & Cristian G. Gebhardt & Raimund Rolfes & Christof Devriendt, 2019. "Validation of Improved Sampling Concepts for Offshore Wind Turbine Fatigue Design," Energies, MDPI, vol. 12(4), pages 1-20, February.
    10. Morató, A. & Sriramula, S. & Krishnan, N. & Nichols, J., 2017. "Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation," Renewable Energy, Elsevier, vol. 101(C), pages 126-143.
    11. Yu, W. & Ferreira, C. & van Kuik, G.A.M., 2019. "The dynamic wake of an actuator disc undergoing transient load: A numerical and experimental study," Renewable Energy, Elsevier, vol. 132(C), pages 1402-1414.
    12. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    13. Fabian Vorpahl & Holger Schwarze & Tim Fischer & Marc Seidel & Jason Jonkman, 2013. "Offshore wind turbine environment, loads, simulation, and design," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(5), pages 548-570, September.
    14. Lacal-Arántegui, Roberto & Yusta, José M. & Domínguez-Navarro, José Antonio, 2018. "Offshore wind installation: Analysing the evidence behind improvements in installation time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 133-145.
    15. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    16. Li, Y. & Castro, A.M. & Sinokrot, T. & Prescott, W. & Carrica, P.M., 2015. "Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence," Renewable Energy, Elsevier, vol. 76(C), pages 338-361.
    17. Ziegler, Lisa & Voormeeren, Sven & Schafhirt, Sebastian & Muskulus, Michael, 2016. "Design clustering of offshore wind turbines using probabilistic fatigue load estimation," Renewable Energy, Elsevier, vol. 91(C), pages 425-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Chen & Qi Xu & Xinyu Luo & Angran Tian & Sujing Xu & Qiang Tang, 2022. "Safety Evaluation and Energy Consumption Analysis of Deep Foundation Pit Excavation through Numerical Simulation and In-Site Monitoring," Energies, MDPI, vol. 15(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    2. Velarde, Joey & Kramhøft, Claus & Sørensen, John Dalsgaard, 2019. "Global sensitivity analysis of offshore wind turbine foundation fatigue loads," Renewable Energy, Elsevier, vol. 140(C), pages 177-189.
    3. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    4. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    5. Hernandez-Estrada, Edwin & Lastres-Danguillecourt, Orlando & Robles-Ocampo, Jose B. & Lopez-Lopez, Andres & Sevilla-Camacho, Perla Y. & Perez-Sariñana, Bianca Y. & Dorrego-Portela, Jose R., 2021. "Considerations for the structural analysis and design of wind turbine towers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Chen, Chao & Duffour, Philippe & Fromme, Paul & Hua, Xugang, 2021. "Numerically efficient fatigue life prediction of offshore wind turbines using aerodynamic decoupling," Renewable Energy, Elsevier, vol. 178(C), pages 1421-1434.
    7. Cong, Shuai & James Hu, Sau-Lon & Li, Hua-Jun, 2022. "Using incomplete complex modes for model updating of monopiled offshore wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 522-534.
    8. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    9. Zuo, Haoran & Bi, Kaiming & Hao, Hong, 2020. "A state-of-the-art review on the vibration mitigation of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Pablo Zambrana & Javier Fernandez-Quijano & J. Jesus Fernandez-Lozano & Pedro M. Mayorga Rubio & Alfonso J. Garcia-Cerezo, 2021. "Improving the Performance of Controllers for Wind Turbines on Semi-Submersible Offshore Platforms: Fuzzy Supervisor Control," Energies, MDPI, vol. 14(19), pages 1-17, September.
    11. Rezaei, Ramtin & Fromme, Paul & Duffour, Philippe, 2018. "Fatigue life sensitivity of monopile-supported offshore wind turbines to damping," Renewable Energy, Elsevier, vol. 123(C), pages 450-459.
    12. Petrović, A. & Đurišić, Ž., 2021. "Genetic algorithm based optimized model for the selection of wind turbine for any site-specific wind conditions," Energy, Elsevier, vol. 236(C).
    13. Marino, Enzo & Giusti, Alessandro & Manuel, Lance, 2017. "Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds," Renewable Energy, Elsevier, vol. 102(PA), pages 157-169.
    14. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    15. Meng, Jiayao & Dai, Kaoshan & Zhao, Zhi & Mao, Zhenxi & Camara, Alfredo & Zhang, Songhan & Mei, Zhu, 2020. "Study on the aerodynamic damping for the seismic analysis of wind turbines in operation," Renewable Energy, Elsevier, vol. 159(C), pages 1224-1242.
    16. Torres, Antonio & Gil, Javier & Plaza, Aitor & Aginaga, Jokin, 2024. "4P operational harmonic and blade vibration in wind turbines: A real case study of an active yaw system and a concrete tower," Renewable Energy, Elsevier, vol. 227(C).
    17. Ju, Shen-Haw & Su, Feng-Chien & Ke, Yi-Pei & Xie, Min-Hsuan, 2019. "Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme," Renewable Energy, Elsevier, vol. 136(C), pages 69-78.
    18. Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
    19. Bizon, Nicu, 2018. "Optimal operation of fuel cell/wind turbine hybrid power system under turbulent wind and variable load," Applied Energy, Elsevier, vol. 212(C), pages 196-209.
    20. Meng, Hang & Lien, Fue-Sang & Yee, Eugene & Shen, Jingfang, 2020. "Modelling of anisotropic beam for rotating composite wind turbine blade by using finite-difference time-domain (FDTD) method," Renewable Energy, Elsevier, vol. 162(C), pages 2361-2379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5195-:d:424048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.