IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005688.html
   My bibliography  Save this article

4P operational harmonic and blade vibration in wind turbines: A real case study of an active yaw system and a concrete tower

Author

Listed:
  • Torres, Antonio
  • Gil, Javier
  • Plaza, Aitor
  • Aginaga, Jokin

Abstract

This study aims to comprehensively investigate the impact of mechanical loads on the performance and lifetime of wind turbines, with particular emphasis on blade vibration at the 4P operational harmonic. Experiments and advanced aeroelastic simulations are combined to assess how active yaw systems and concrete towers affect this specific vibration. Contrary to previous assumptions, field tests have shown that there is a resonance phenomenon in the blade. Specifically, the first edgewise mode of the blade resonates at the 4P frequency, which did not happen in the aeroelastic simulations. Remarkably, thorough aeroelastic simulations show that this resonance is triggered by the excitation of the Edgewise Backward Whirling mode of the rotor, which occurs at the 3P operating harmonic. This study highlights the need for accurate and precise modelling using aeroelastic simulations to reproduce the resonance phenomenon and analyse the contributing factors. A major breakthrough is the discovery that stiffening the active yaw system significantly reduces the 3P hub fixed motions, resulting in reduced blade vibration at the 4P frequency. Furthermore, the simulations show the sensitivity of the 4P vibration to different wind characteristics, providing valuable insights for the design of wind turbines in different environmental conditions.

Suggested Citation

  • Torres, Antonio & Gil, Javier & Plaza, Aitor & Aginaga, Jokin, 2024. "4P operational harmonic and blade vibration in wind turbines: A real case study of an active yaw system and a concrete tower," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005688
    DOI: 10.1016/j.renene.2024.120503
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zili Zhang & Søren R. K. Nielsen & Frede Blaabjerg & Dao Zhou, 2014. "Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque," Energies, MDPI, vol. 7(11), pages 1-27, November.
    2. Petrović, Vlaho & Jelavić, Mate & Baotić, Mato, 2015. "Advanced control algorithms for reduction of wind turbine structural loads," Renewable Energy, Elsevier, vol. 76(C), pages 418-431.
    3. Abdulrahman, Mamdouh & Wood, David, 2017. "Investigating the Power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation," Renewable Energy, Elsevier, vol. 102(PB), pages 267-278.
    4. Coral-Enriquez, Horacio & Cortés-Romero, John & Dorado-Rojas, Sergio A., 2019. "Rejection of varying-frequency periodic load disturbances in wind-turbines through active disturbance rejection-based control," Renewable Energy, Elsevier, vol. 141(C), pages 217-235.
    5. Sayed, M. & Klein, L. & Lutz, Th. & Krämer, E., 2019. "The impact of the aerodynamic model fidelity on the aeroelastic response of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 140(C), pages 304-318.
    6. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    7. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Haoran & Bi, Kaiming & Hao, Hong, 2020. "A state-of-the-art review on the vibration mitigation of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.
    3. Petrović, A. & Đurišić, Ž., 2021. "Genetic algorithm based optimized model for the selection of wind turbine for any site-specific wind conditions," Energy, Elsevier, vol. 236(C).
    4. Jingchun Chu & Ling Yuan & Yang Hu & Chenyang Pan & Lei Pan, 2019. "Comparative Analysis of Identification Methods for Mechanical Dynamics of Large-Scale Wind Turbine," Energies, MDPI, vol. 12(18), pages 1-24, September.
    5. Pim van der Male & Marco Vergassola & Karel N. van Dalen, 2020. "Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures," Energies, MDPI, vol. 13(19), pages 1-35, October.
    6. Bon-Yong Koo & Dae-Yi Jung, 2019. "A Comparative Study on Primary Bearing Rating Life of a 5-MW Two-Blade Wind Turbine System Based on Two Different Control Domains," Energies, MDPI, vol. 12(13), pages 1-16, July.
    7. Jijian Lian & Yue Zhao & Chong Lian & Haijun Wang & Xiaofeng Dong & Qi Jiang & Huan Zhou & Junni Jiang, 2018. "Application of an Eddy Current-Tuned Mass Damper to Vibration Mitigation of Offshore Wind Turbines," Energies, MDPI, vol. 11(12), pages 1-18, November.
    8. Muhammad Moman Shahzad & Xun’an Zhang & Xinwei Wang, 2022. "Identification of Structural Damage and Damping Performance of a Mega-Subcontrolled Structural System (MSCSS) Subjected to Seismic Action," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
    9. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    10. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    11. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    12. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    13. Zhang, Zili, 2022. "Vibration suppression of floating offshore wind turbines using electromagnetic shunt tuned mass damper," Renewable Energy, Elsevier, vol. 198(C), pages 1279-1295.
    14. Kadoche, Elie & Gourvénec, Sébastien & Pallud, Maxime & Levent, Tanguy, 2023. "MARLYC: Multi-Agent Reinforcement Learning Yaw Control," Renewable Energy, Elsevier, vol. 217(C).
    15. Papini, Guglielmo & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Fault diagnosis and fault-tolerant control in wave energy: A perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Yuan, Yuan & Chen, Xu & Tang, J., 2020. "Multivariable robust blade pitch control design to reject periodic loads on wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 329-341.
    17. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    18. Yuan, Yuan & Tang, J., 2017. "Adaptive pitch control of wind turbine for load mitigation under structural uncertainties," Renewable Energy, Elsevier, vol. 105(C), pages 483-494.
    19. Liu, Yanhua & Patton, Ron J. & Shi, Shuo, 2023. "Actuator fault tolerant offshore wind turbine load mitigation control," Renewable Energy, Elsevier, vol. 205(C), pages 432-446.
    20. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.