Pyrolysis oil composition and catalytic activity estimated by cumulative mass analysis using Py-GC/MS EGA-MS
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.119428
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
- Yildiz, Güray & Ronsse, Frederik & Duren, Ruben van & Prins, Wolter, 2016. "Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1596-1610.
- Qiang Lu & Zhi-Fei Zhang & Chang-Qing Dong & Xi-Feng Zhu, 2010. "Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study," Energies, MDPI, vol. 3(11), pages 1-16, November.
- Alexander A. Myburg & Dario Grattapaglia & Gerald A. Tuskan & Uffe Hellsten & Richard D. Hayes & Jane Grimwood & Jerry Jenkins & Erika Lindquist & Hope Tice & Diane Bauer & David M. Goodstein & Inna D, 2014. "The genome of Eucalyptus grandis," Nature, Nature, vol. 510(7505), pages 356-362, June.
- Merckel, R.D. & Labuschagne, F.J.W.J. & Heydenrych, M.D., 2019. "Oxygen consumption as the definitive factor in predicting heat of combustion," Applied Energy, Elsevier, vol. 235(C), pages 1041-1047.
- Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
- Kim, Kwang Ho & Kim, Tae-Seung & Lee, Soo-Min & Choi, Donha & Yeo, Hwanmyeong & Choi, In-Gyu & Choi, Joon Weon, 2013. "Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis," Renewable Energy, Elsevier, vol. 50(C), pages 188-195.
- Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ricardo de C. Bittencourt & Tiago Guimarães & Marcelo M. da Costa & Larissa S. Silva & Verônica O. de P. Barbosa & Stéphani Caroline de L. Arêdes & Krisnna S. Alves & Ana Márcia M. L. Carvalho, 2024. "Production of High-Value Green Chemicals via Catalytic Fast Pyrolysis of Eucalyptus urograndis Forest Residues," Sustainability, MDPI, vol. 16(19), pages 1-14, September.
- Cui, Da & Yin, Helin & Liu, Yupeng & Li, Ji & Pan, Shuo & Wang, Qing, 2022. "Effect of final pyrolysis temperature on the composition and structure of shale oil: Synergistic use of multiple analysis and testing methods," Energy, Elsevier, vol. 252(C).
- Muzyka, Roksana & Misztal, Edyta & Hrabak, Joanna & Banks, Scott W. & Sajdak, Marcin, 2023. "Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar," Energy, Elsevier, vol. 263(PE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
- Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
- Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
- Arteaga-Pérez, Luis E. & Gómez Cápiro, Oscar & Romero, Romina & Delgado, Aaron & Olivera, Patricia & Ronsse, Frederik & Jiménez, Romel, 2017. "In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts," Energy, Elsevier, vol. 128(C), pages 701-712.
- Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
- Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
- Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
- Zhijun Zhang & Shujuan Sui & Fengqiang Wang & Qingwen Wang & Charles U. Pittman, 2013. "Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid," Energies, MDPI, vol. 6(9), pages 1-20, September.
- Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
- Javier Fermoso & Patricia Pizarro & Juan M. Coronado & David P. Serrano, 2017. "Advanced biofuels production by upgrading of pyrolysis bio‐oil," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
- Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
- Bamdad, Hanieh & Hawboldt, Kelly & MacQuarrie, Stephanie, 2018. "A review on common adsorbents for acid gases removal: Focus on biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1705-1720.
- Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
- Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
- Liu, Chao & Liu, Jingyong & Evrendilek, Fatih & Xie, Wuming & Kuo, Jiahong & Buyukada, Musa, 2020. "Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS," Renewable Energy, Elsevier, vol. 148(C), pages 1074-1093.
- Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
- Siddiqi, Hammad & Bal, Manisha & Kumari, Usha & Meikap, B.C., 2020. "In-depth physiochemical characterization and detailed thermo-kinetic study of biomass wastes to analyze its energy potential," Renewable Energy, Elsevier, vol. 148(C), pages 756-771.
- Saraeian, Alireza & Nolte, Michael W. & Shanks, Brent H., 2019. "Deoxygenation of biomass pyrolysis vapors: Improving clarity on the fate of carbon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 262-280.
More about this item
Keywords
Py-GC/MS; Fast pyrolysis; Catalysis; Estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220325354. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.