IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i8p4152-4169d28004.html
   My bibliography  Save this article

Islanding Detection Method of a Photovoltaic Power Generation System Based on a CMAC Neural Network

Author

Listed:
  • Kuei-Hsiang Chao

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

  • Min-Sen Yang

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

  • Chin-Pao Hung

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

Abstract

This study proposes an islanding detection method for photovoltaic power generation systems based on a cerebellar model articulation controller (CMAC) neural network. First, islanding phenomenon test data were used as training samples to train the CMAC neural network. Then, a photovoltaic power generation system was tested with the islanding phenomena. Because the CMAC neural network possesses association and induction abilities and characteristics that activate similar input signals in approximate memory during training process, the CMAC only requires that the weight values of the excited memory addresses be adjusted, thereby reducing the training time. Furthermore, quantification of the input signals enhanced the detection tolerance of the proposed method. Finally, the simulative and experimental data verified the feasibility of adopting the proposed detection method for islanding phenomena.

Suggested Citation

  • Kuei-Hsiang Chao & Min-Sen Yang & Chin-Pao Hung, 2013. "Islanding Detection Method of a Photovoltaic Power Generation System Based on a CMAC Neural Network," Energies, MDPI, vol. 6(8), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:8:p:4152-4169:d:28004
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/8/4152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/8/4152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying-Yi Hong & Jing-Han Chou, 2012. "Nonintrusive Energy Monitoring for Microgrids Using Hybrid Self-Organizing Feature-Mapping Networks," Energies, MDPI, vol. 5(7), pages 1-16, July.
    2. Jong-Yul Kim & Hak-Man Kim & Seul-Ki Kim & Jin-Hong Jeon & Heung-Kwan Choi, 2011. "Designing an Energy Storage System Fuzzy PID Controller for Microgrid Islanded Operation," Energies, MDPI, vol. 4(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    2. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, vol. 11(10), pages 1-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    2. Ratnam Kamala Sarojini & Kaliannan Palanisamy & Enrico De Tuglie, 2022. "A Fuzzy Logic-Based Emulated Inertia Control to a Supercapacitor System to Improve Inertia in a Low Inertia Grid with Renewables," Energies, MDPI, vol. 15(4), pages 1-23, February.
    3. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    4. Chin-Hsing Cheng, 2016. "Implementation of a Small Type DC Microgrid Based on Fuzzy Control and Dynamic Programming," Energies, MDPI, vol. 9(10), pages 1-12, September.
    5. Yancai Xiao & Tieling Zhang & Zeyu Ding & Chunya Li, 2016. "The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters," Energies, MDPI, vol. 9(5), pages 1-17, May.
    6. Ying-Yi Hong & Jing-Han Chou, 2012. "Nonintrusive Energy Monitoring for Microgrids Using Hybrid Self-Organizing Feature-Mapping Networks," Energies, MDPI, vol. 5(7), pages 1-16, July.
    7. Woo-Kyu Chae & Jong-Nam Won & Hak-Ju Lee & Jae-Eon Kim & Jaehong Kim, 2016. "Comparative Analysis of Voltage Control in Battery Power Converters for Inverter-Based AC Microgrids," Energies, MDPI, vol. 9(8), pages 1-18, July.
    8. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2017. "Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid," Energies, MDPI, vol. 10(4), pages 1-17, March.
    9. Hsueh-Hsien Chang, 2012. "Non-Intrusive Demand Monitoring and Load Identification for Energy Management Systems Based on Transient Feature Analyses," Energies, MDPI, vol. 5(11), pages 1-21, November.
    10. Fengbing Li & Kaigui Xie & Jiangping Yang, 2015. "Optimization and Analysis of a Hybrid Energy Storage System in a Small-Scale Standalone Microgrid for Remote Area Power Supply (RAPS)," Energies, MDPI, vol. 8(6), pages 1-25, May.
    11. Bo Chen & Ping Wang & Yifeng Wang & Wei Li & Fuqiang Han & Shuhuai Zhang, 2017. "Comparative Analysis and Optimization of Power Loss Based on the Isolated Series/Multi Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(10), pages 1-26, October.
    12. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Bo Chen, 2017. "A High-Efficiency Isolated LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(7), pages 1-22, July.
    13. Basit Ali & Muhammad Waseem Ashraf & Shahzadi Tayyaba, 2019. "Simulation, Fuzzy Analysis and Development of ZnO Nanostructure-based Piezoelectric MEMS Energy Harvester," Energies, MDPI, vol. 12(5), pages 1-15, February.
    14. Luis Hernandez & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio J. Sanchez-Esguevillas & Jaime Lloret, 2013. "Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks," Energies, MDPI, vol. 6(3), pages 1-24, March.
    15. Edison Banguero & Antonio Correcher & Ángel Pérez-Navarro & Francisco Morant & Andrés Aristizabal, 2018. "A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems," Energies, MDPI, vol. 11(4), pages 1-15, April.
    16. Saqib Yousuf & Viqar Yousuf & Neeraj Gupta & Talal Alharbi & Omar Alrumayh, 2023. "Enhanced Control Designs to Abate Frequency Oscillations in Compensated Power System," Energies, MDPI, vol. 16(5), pages 1-20, February.
    17. Aggelos S. Bouhouras & Paschalis A. Gkaidatzis & Konstantinos C. Chatzisavvas & Evangelos Panagiotou & Nikolaos Poulakis & Georgios C. Christoforidis, 2017. "Load Signature Formulation for Non-Intrusive Load Monitoring Based on Current Measurements," Energies, MDPI, vol. 10(4), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:8:p:4152-4169:d:28004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.