IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i8p3692-3705d27498.html
   My bibliography  Save this article

EMS-Data-Based Load Modeling to Evaluate the Effect of Conservation Voltage Reduction at a National Level

Author

Listed:
  • Soon-Ryul Nam

    (Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea)

  • Sang-Hee Kang

    (Department of Electrical Engineering, Myongji University, Yongin 449-728, Korea)

  • Joo-Ho Lee

    (Department of System Operation and Control, Korea Power Exchange, Seoul 135-791, Korea)

  • Eun-Jae Choi

    (Department of System Operation and Control, Korea Power Exchange, Seoul 135-791, Korea)

  • Seon-Ju Ahn

    (Department of Electrical Engineering, Chonnam National University, Gwangju 500-757, Korea)

  • Joon-Ho Choi

    (Department of Electrical Engineering, Chonnam National University, Gwangju 500-757, Korea)

Abstract

This paper proposes a linearized load model to evaluate the effect of conservation voltage reduction at a national level. In this model, the respective active and reactive linearizing parameters for active and reactive loads in a power system are estimated using energy management system (EMS) data resulting from conservation voltage reductions. To verify the validity of the linearized load model, PSS/E simulations were conducted for a test power system. Given that conservation voltage reductions are usually executed in the range of 2.0%–5.0%, the proposed model was found to be sufficient to accurately evaluate the effect of conservation voltage reduction. Additionally, Korean EMS data were used to estimate the linearizing parameters for aggregated loads in an actual power system.

Suggested Citation

  • Soon-Ryul Nam & Sang-Hee Kang & Joo-Ho Lee & Eun-Jae Choi & Seon-Ju Ahn & Joon-Ho Choi, 2013. "EMS-Data-Based Load Modeling to Evaluate the Effect of Conservation Voltage Reduction at a National Level," Energies, MDPI, vol. 6(8), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:8:p:3692-3705:d:27498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/8/3692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/8/3692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    2. Massoud Amin, S. & Gellings, Clark W., 2006. "The North American power delivery system: Balancing market restructuring and environmental economics with infrastructure security," Energy, Elsevier, vol. 31(6), pages 967-999.
    3. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    4. Hsueh-Hsien Chang, 2012. "Non-Intrusive Demand Monitoring and Load Identification for Energy Management Systems Based on Transient Feature Analyses," Energies, MDPI, vol. 5(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soon-Ryul Nam & Sang-Hee Kang & Joo-Ho Lee & Seon-Ju Ahn & Joon-Ho Choi, 2013. "Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data," Energies, MDPI, vol. 6(12), pages 1-13, December.
    2. Luciano C. Siebert & Adriana Sbicca & Alexandre Rasi Aoki & Germano Lambert-Torres, 2017. "A Behavioral Economics Approach to Residential Electricity Consumption," Energies, MDPI, vol. 10(6), pages 1-18, June.
    3. Kyungsung An & Hao Jan Liu & Hao Zhu & Zhao Yang Dong & Kyeon Hur, 2016. "Evaluation of Conservation Voltage Reduction with Analytic Hierarchy Process: A Decision Support Framework in Grid Operations Planning," Energies, MDPI, vol. 9(12), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    2. Yokoyama, Ryohei & Tokunaga, Akira & Wakui, Tetsuya, 2018. "Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 153(C), pages 159-169.
    3. Yokoyama, Ryohei & Nakamura, Ryo & Wakui, Tetsuya, 2017. "Performance comparison of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 137(C), pages 878-887.
    4. Yokoyama, Ryohei & Kamada, Hiroki & Shinano, Yuji & Wakui, Tetsuya, 2021. "A hierarchical optimization approach to robust design of energy supply systems based on a mixed-integer linear model," Energy, Elsevier, vol. 229(C).
    5. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    6. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    7. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    8. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    9. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    10. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    11. Anca N. Iuga (Butnariu) & Vasile N. Popa & Luminița I. Popa, 2018. "Comparative Analysis of Automotive Products Regarding the Influence of Eco-Friendly Methods to Emissions’ Reduction," Energies, MDPI, vol. 12(1), pages 1-24, December.
    12. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.
    13. Esmaili, Masoud & Shayanfar, Heidar Ali & Amjady, Nima, 2009. "Multi-objective congestion management incorporating voltage and transient stabilities," Energy, Elsevier, vol. 34(9), pages 1401-1412.
    14. Wesley Angelino de Souza & Fernando Deluno Garcia & Fernando Pinhabel Marafão & Luiz Carlos Pereira da Silva & Marcelo Godoy Simões, 2019. "Load Disaggregation Using Microscopic Power Features and Pattern Recognition," Energies, MDPI, vol. 12(14), pages 1-18, July.
    15. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "An integrated model for long-term power generation planning toward future smart electricity systems," Applied Energy, Elsevier, vol. 112(C), pages 1424-1437.
    16. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    17. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    18. Lefeng Cheng & Zhiyi Zhang & Haorong Jiang & Tao Yu & Wenrui Wang & Weifeng Xu & Jinxiu Hua, 2018. "Local Energy Management and Optimization: A Novel Energy Universal Service Bus System Based on Energy Internet Technologies," Energies, MDPI, vol. 11(5), pages 1-38, May.
    19. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    20. Trumbo, Jennifer L. & Tonn, Bruce E., 2016. "Biofuels: A sustainable choice for the United States' energy future?," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 147-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:8:p:3692-3705:d:27498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.