IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v102y2017ipap178-189.html
   My bibliography  Save this article

A multi-stage Smart Energy Management System under multiple uncertainties: A data mining approach

Author

Listed:
  • Parvizimosaed, M.
  • Farmani, F.
  • Monsef, H.
  • Rahimi-Kian, A.

Abstract

Smart Energy Management Systems (SEMS) have become indispensable in Micro-Grid (MG) infrastructure for saving energy usage costs and system control considering the time-varying parameters. In this paper, a new multi-stage SEMS architecture is proposed for optimal energy management in MGs considering various resource uncertainties. The proposed SEMS performs various tasks such as data acquisition/mining/refinement, pattern recognition, learning parameters and offline/online decision making. To meet the energy consumption suitably, the multi-objective SEMS operates in multi-stage scheduling problem, i.e. day-ahead, hour-ahead, and real-time markets. Moreover, some data mining algorithms have been applied to reduce the huge amount of raw data, to recognize patterns for analysis, and to learn the given parameters. From the stochastic point of view, the proposed architecture also takes into account the uncertainties of weather conditions, energy consumption and the spot market price in the risk analysis. To handle these uncertainties, a stochastic scheduling approach which includes the mean and variance of energy cost is considered in the optimization process. The simulation results illustrate the efficiency of the proposed SEMS in different case studies.

Suggested Citation

  • Parvizimosaed, M. & Farmani, F. & Monsef, H. & Rahimi-Kian, A., 2017. "A multi-stage Smart Energy Management System under multiple uncertainties: A data mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 178-189.
  • Handle: RePEc:eee:renene:v:102:y:2017:i:pa:p:178-189
    DOI: 10.1016/j.renene.2016.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116308862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vehvilainen, Iivo & Keppo, Jussi, 2003. "Managing electricity market price risk," European Journal of Operational Research, Elsevier, vol. 145(1), pages 136-147, February.
    2. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    3. H. Brett Humphreys & Katherine T. McClain, 1998. "Reducing the Impacts of Energy Price Volatility Through Dynamic Portfolio Selection," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 107-131.
    4. Motevasel, Mehdi & Seifi, Ali Reza & Niknam, Taher, 2013. "Multi-objective energy management of CHP (combined heat and power)-based micro-grid," Energy, Elsevier, vol. 51(C), pages 123-136.
    5. Chang, Hsueh-Hsien, 2011. "Genetic algorithms and non-intrusive energy management system based economic dispatch for cogeneration units," Energy, Elsevier, vol. 36(1), pages 181-190.
    6. Moradi, Mohammad H. & Hajinazari, Mehdi & Jamasb, Shahriar & Paripour, Mahmoud, 2013. "An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming," Energy, Elsevier, vol. 49(C), pages 86-101.
    7. Awerbuch, Shimon, 2000. "Investing in photovoltaics: risk, accounting and the value of new technology," Energy Policy, Elsevier, vol. 28(14), pages 1023-1035, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sirat, Ali Parsa, 2018. "Loss Minimization through the Allocation of DGs Considering the Stochastic Nature of Units," MPRA Paper 87636, University Library of Munich, Germany.
    2. Niloofar Ghanbari & Hossein Mokhtari & Subhashish Bhattacharya, 2018. "Optimizing Operation Indices Considering Different Types of Distributed Generation in Microgrid Applications," Energies, MDPI, vol. 11(4), pages 1-12, April.
    3. Yu, L. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2018. "A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin," Applied Energy, Elsevier, vol. 210(C), pages 60-74.
    4. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Operational scheduling of electric vehicles parking lot integrated with renewable generation based on bilevel programming approach," Energy, Elsevier, vol. 139(C), pages 422-432.
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Minsoo Kim & Kangsan Kim & Hyungeun Choi & Seonjeong Lee & Hongseok Kim, 2019. "Practical Operation Strategies for Energy Storage System under Uncertainty," Energies, MDPI, vol. 12(6), pages 1-14, March.
    7. Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsied, Moataz & Oukaour, Amrane & Gualous, Hamid & Hassan, Radwan, 2015. "Energy management and optimization in microgrid system based on green energy," Energy, Elsevier, vol. 84(C), pages 139-151.
    2. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    3. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    4. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    5. McLarty, Dustin & Panossian, Nadia & Jabbari, Faryar & Traverso, Alberto, 2019. "Dynamic economic dispatch using complementary quadratic programming," Energy, Elsevier, vol. 166(C), pages 755-764.
    6. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    7. Guy Meunier, 2014. "Risk Aversion and Technology Portfolios," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(4), pages 347-365, June.
    8. Marrero, Gustavo A. & Puch, Luis A. & Ramos-Real, Francisco J., 2015. "Mean-variance portfolio methods for energy policy risk management," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 246-264.
    9. Alipour, Manijeh & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2014. "Short-term scheduling of combined heat and power generation units in the presence of demand response programs," Energy, Elsevier, vol. 71(C), pages 289-301.
    10. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    11. Whei-Min Lin & Chung-Yuen Yang & Chia-Sheng Tu & Hsi-Shan Huang & Ming-Tang Tsai, 2019. "The Optimal Energy Dispatch of Cogeneration Systems in a Liberty Market," Energies, MDPI, vol. 12(15), pages 1-15, July.
    12. Marrero, Gustavo A. & Ramos-Real, Francisco Javier, 2010. "Electricity generation cost in isolated system: The complementarities of natural gas and renewables in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2808-2818, December.
    13. Lynch, Muireann Á. & Shortt, Aonghus & Tol, Richard S.J. & O'Malley, Mark J., 2013. "Risk–return incentives in liberalised electricity markets," Energy Economics, Elsevier, vol. 40(C), pages 598-608.
    14. Giaouris, Damian & Papadopoulos, Athanasios I. & Ziogou, Chrysovalantou & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos & Stergiopoulos, Fotis & Elmasides, Costas, 2013. "Performance investigation of a hybrid renewable power generation and storage system using systemic power management models," Energy, Elsevier, vol. 61(C), pages 621-635.
    15. Zhang, Mingming & Tang, Yamei & Liu, Liyun & Zhou, Dequn, 2022. "Optimal investment portfolio strategies for power enterprises under multi-policy scenarios of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    17. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    18. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    19. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    20. Deihimi, Ali & Keshavarz Zahed, Babak & Iravani, Reza, 2016. "An interactive operation management of a micro-grid with multiple distributed generations using multi-objective uniform water cycle algorithm," Energy, Elsevier, vol. 106(C), pages 482-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:102:y:2017:i:pa:p:178-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.