Load Disaggregation Using Microscopic Power Features and Pattern Recognition
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hui He & Zixuan Liu & Runhai Jiao & Guangwei Yan, 2019. "A Novel Nonintrusive Load Monitoring Approach based on Linear-Chain Conditional Random Fields," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Ying-Ren Chien & Hao-Chun Yu, 2019. "Mitigating Impulsive Noise for Wavelet-OFDM Powerline Communication," Energies, MDPI, vol. 12(8), pages 1-13, April.
- Younghoon Kwak & Jihyun Hwang & Taewon Lee, 2018. "Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building," Energies, MDPI, vol. 11(4), pages 1-22, April.
- Hsueh-Hsien Chang, 2012. "Non-Intrusive Demand Monitoring and Load Identification for Energy Management Systems Based on Transient Feature Analyses," Energies, MDPI, vol. 5(11), pages 1-21, November.
- Marco Fagiani & Roberto Bonfigli & Emanuele Principi & Stefano Squartini & Luigi Mandolini, 2019. "A Non-Intrusive Load Monitoring Algorithm Based on Non-Uniform Sampling of Power Data and Deep Neural Networks," Energies, MDPI, vol. 12(7), pages 1-26, April.
- Carroll, James & Lyons, Seán & Denny, Eleanor, 2014. "Reducing household electricity demand through smart metering: The role of improved information about energy saving," Energy Economics, Elsevier, vol. 45(C), pages 234-243.
- Kwok Tai Chui & Miltiadis D. Lytras & Anna Visvizi, 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption," Energies, MDPI, vol. 11(11), pages 1-20, October.
- Thi-Thu-Huong Le & Howon Kim, 2018. "Non-Intrusive Load Monitoring Based on Novel Transient Signal in Household Appliances with Low Sampling Rate," Energies, MDPI, vol. 11(12), pages 1-35, December.
- Aggelos S. Bouhouras & Paschalis A. Gkaidatzis & Konstantinos C. Chatzisavvas & Evangelos Panagiotou & Nikolaos Poulakis & Georgios C. Christoforidis, 2017. "Load Signature Formulation for Non-Intrusive Load Monitoring Based on Current Measurements," Energies, MDPI, vol. 10(4), pages 1-21, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
- Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
- İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
- Veronica Piccialli & Antonio M. Sudoso, 2021. "Improving Non-Intrusive Load Disaggregation through an Attention-Based Deep Neural Network," Energies, MDPI, vol. 14(4), pages 1-16, February.
- Petros Papageorgiou & Dimitra Mylona & Konstantinos Stergiou & Aggelos S. Bouhouras, 2023. "A Time-Driven Deep Learning NILM Framework Based on Novel Current Harmonic Distortion Images," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
- Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
- Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
- Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
- Qian Wu & Fei Wang, 2019. "Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background," Energies, MDPI, vol. 12(8), pages 1-17, April.
- Anwar Ul Haq & Hans-Arno Jacobsen, 2018. "Prospects of Appliance-Level Load Monitoring in Off-the-Shelf Energy Monitors: A Technical Review," Energies, MDPI, vol. 11(1), pages 1-22, January.
- Younghoon Kwak & Jihyun Hwang & Taewon Lee, 2018. "Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building," Energies, MDPI, vol. 11(4), pages 1-22, April.
- Tan Yigitcanlar & Kevin C. Desouza & Luke Butler & Farnoosh Roozkhosh, 2020. "Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature," Energies, MDPI, vol. 13(6), pages 1-38, March.
- Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
- Abdelhamid Zaidi & Samuel-Soma M. Ajibade & Majd Musa & Festus Victor Bekun, 2023. "New Insights into the Research Landscape on the Application of Artificial Intelligence in Sustainable Smart Cities: A Bibliometric Mapping and Network Analysis Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 287-299, July.
- Jie Gao & Xinping Huang & Lili Zhang, 2019. "Comparative Analysis between International Research Hotspots and National-Level Policy Keywords on Artificial Intelligence in China from 2009 to 2018," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
- Giovanni Artale & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Riccardo Fiorelli & Salvatore Guaiana & Nicola Panzavecchia & Giovanni Tinè, 2019. "A New Coupling Solution for G3-PLC Employment in MV Smart Grids," Energies, MDPI, vol. 12(13), pages 1-23, June.
- Kim, Myung Ja & Hall, C. Michael & Kwon, Ohbyung & Sohn, Kwonsang, 2024. "Space tourism: Value-attitude-behavior theory, artificial intelligence, and sustainability," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
- Singhal, Puja, 2024. "Inform me when it matters: Cost salience, energy consumption, and efficiency investments," Energy Economics, Elsevier, vol. 133(C).
- Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
- Ding, Dong & Li, Junhuai & Wang, Huaijun & Wang, Kan & Feng, Jie & Xiao, Ming, 2024. "ApplianceFilter: Targeted electrical appliance disaggregation with prior knowledge fusion," Applied Energy, Elsevier, vol. 365(C).
- Anabel Ortega-Fernández & Rodrigo Martín-Rojas & Víctor Jesús García-Morales, 2020. "Artificial Intelligence in the Urban Environment: Smart Cities as Models for Developing Innovation and Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
- Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
- Adélaïde Fadhuile & Daniel Llerena & Béatrice Roussillon, 2023.
"Intrinsic Motivation to Promote the Development of Renewable Energy : A Field Experiment from Household Demand,"
Working Papers
hal-03977597, HAL.
- Adélaïde Fadhuile & Daniel Llerena & Béatrice Roussillon, 2023. "Intrinsic motivation to promote the development of renewable energy: a field experiment from household demand," Working Papers 2023-01, Grenoble Applied Economics Laboratory (GAEL).
- Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
More about this item
Keywords
load disaggregation; artificial intelligence; cognitive meters; machine learning; state machine; NILM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2641-:d:247078. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.