IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v188y2019ics0360544219317062.html
   My bibliography  Save this article

A fast online load identification algorithm based on V-I characteristics of high-frequency data under user operational constraints

Author

Listed:
  • Wu, Xin
  • Jiao, Dian
  • Liang, Kaixin
  • Han, Xiao

Abstract

Non-intrusive load monitoring is an effective way for the power grid to obtain the power consumption on the user side. High-frequency data acquisition mode can provide more load information with a large amount of data, which is suitable for load online identification. However, high accuracy and real-time performance are required. In this regard, a fast online identification algorithm based on V-I characteristics of high-frequency is studied: According to the principle of constant capacitive and inductive characteristic of electrical appliance, under same voltage setting, the periodic current of previous switching appliance-when it is running stably-can be calculated by steady periodic current obtained each time before transient state with one-dimensional addition/subtraction. Then, the target function can be further constrained by incorporating residents’ habits, thus narrowing down the scope of possible combinations of the electrical devices that may have switched. Finally, the load states can be determined through solving the optimized function under operational constraints. This study can extract accurate and stable load currents to identify the switching load, and effectively determine the on/off time of each appliance in a short period of time. Experiments on the public BLUED dataset and laboratory data verify the effectiveness of the algorithm together.

Suggested Citation

  • Wu, Xin & Jiao, Dian & Liang, Kaixin & Han, Xiao, 2019. "A fast online load identification algorithm based on V-I characteristics of high-frequency data under user operational constraints," Energy, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317062
    DOI: 10.1016/j.energy.2019.116012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219317062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsai, Men-Shen & Lin, Yu-Hsiu, 2012. "Modern development of an Adaptive Non-Intrusive Appliance Load Monitoring system in electricity energy conservation," Applied Energy, Elsevier, vol. 96(C), pages 55-73.
    2. Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
    3. Fera, M. & Macchiaroli, R. & Iannone, R. & Miranda, S. & Riemma, S., 2016. "Economic evaluation model for the energy Demand Response," Energy, Elsevier, vol. 112(C), pages 457-468.
    4. Beckel, Christian & Sadamori, Leyna & Staake, Thorsten & Santini, Silvia, 2014. "Revealing household characteristics from smart meter data," Energy, Elsevier, vol. 78(C), pages 397-410.
    5. Khanna, Nina Zheng & Guo, Jin & Zheng, Xinye, 2016. "Effects of demand side management on Chinese household electricity consumption: Empirical findings from Chinese household survey," Energy Policy, Elsevier, vol. 95(C), pages 113-125.
    6. Chang, Hsueh-Hsien, 2011. "Genetic algorithms and non-intrusive energy management system based economic dispatch for cogeneration units," Energy, Elsevier, vol. 36(1), pages 181-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
    2. Yang, Chao & Liang, Gaoqi & Liu, Jinjie & Liu, Guolong & Yang, Hongming & Zhao, Junhua & Dong, Zhaoyang, 2023. "A non-intrusive carbon emission accounting method for industrial corporations from the perspective of modern power systems," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhaohua & Sun, Yefei & Wang, Bo, 2020. "Policy cognition is more effective than step tariff in promoting electricity saving behaviour of residents," Energy Policy, Elsevier, vol. 139(C).
    2. Hu, Wenhao & Ho, Mun S. & Cao, Jing, 2019. "Energy consumption of urban households in China," China Economic Review, Elsevier, vol. 58(C).
    3. Wang, Xiaolei & Wei, Chunxin & Wang, Yanhua, 2022. "Does the current tiered electricity pricing structure still restrain electricity consumption in China's residential sector?," Energy Policy, Elsevier, vol. 165(C).
    4. Meng, Ming & Wang, Lixue & Shang, Wei, 2018. "Decomposition and forecasting analysis of China's household electricity consumption using three-dimensional decomposition and hybrid trend extrapolation models," Energy, Elsevier, vol. 165(PA), pages 143-152.
    5. Lin, Boqiang & Wang, Yao, 2020. "Analyzing the elasticity and subsidy to reform the residential electricity tariffs in China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 189-206.
    6. Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
    7. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    8. Wu, Ya & Zhang, Li, 2017. "Evaluation of energy saving effects of tiered electricity pricing and investigation of the energy saving willingness of residents," Energy Policy, Elsevier, vol. 109(C), pages 208-217.
    9. Hsueh-Hsien Chang & Nguyen Viet Linh, 2017. "Statistical Feature Extraction for Fault Locations in Nonintrusive Fault Detection of Low Voltage Distribution Systems," Energies, MDPI, vol. 10(5), pages 1-20, April.
    10. Wang, Yao & Lin, Boqiang, 2021. "Performance of alternative electricity prices on residential welfare in China," Energy Policy, Elsevier, vol. 153(C).
    11. Ayertey, Winfred & Sharifi, Ayyoob & Yoshida, Yuichiro, 2024. "The impact of increase in block pricing on electricity demand responsiveness: Evidence from Ghana," Energy, Elsevier, vol. 288(C).
    12. Sania Malik, 2021. "Residential Electricity Consumers and Increasing Block Pricing Policy in Pakistan: Evidence Based on Household Level Primary Data," Journal of Economic Impact, Science Impact Publishers, vol. 3(2), pages 80-87.
    13. Liu, Chang & Lin, Boqiang, 2020. "Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen," Energy Policy, Elsevier, vol. 138(C).
    14. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    15. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    16. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    17. Kuang, Yunming & Lin, Boqiang, 2021. "Performance of tiered pricing policy for residential natural gas in China: Does the income effect matter?," Applied Energy, Elsevier, vol. 304(C).
    18. Chunhong Sheng & Yun Cao & Bing Xue, 2018. "Residential Energy Sustainability in China and Germany: The Impact of National Energy Policy System," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    19. Li, Lanlan & Luo, Xuan & Zhou, Kaile & Xu, Tingting, 2018. "Evaluation of increasing block pricing for households' natural gas: A case study of Beijing, China," Energy, Elsevier, vol. 157(C), pages 162-172.
    20. Fateh Nassim Melzi & Allou Same & Mohamed Haykel Zayani & Latifa Oukhellou, 2017. "A Dedicated Mixture Model for Clustering Smart Meter Data: Identification and Analysis of Electricity Consumption Behaviors," Energies, MDPI, vol. 10(10), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.