IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i11p4251-4267d20948.html
   My bibliography  Save this article

Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell

Author

Listed:
  • Samuel Simon Araya

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 101, Aalborg East 9220, Denmark)

  • Søren Juhl Andreasen

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 101, Aalborg East 9220, Denmark)

  • Søren Knudsen Kær

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 101, Aalborg East 9220, Denmark)

Abstract

In this work the effects of reformate gas impurities on a H 3 PO 4 -doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC) are studied. A unit cell assembly with a BASF Celtec ® -P2100 high temperature membrane electrode assembly (MEA) of 45 cm 2 active surface area is investigated by means of impedance spectroscopy. The concentrations in the anode feed gas of all impurities, unconverted methanol-water vapor mixture, CO and CO 2 were varied along with current density according to a multilevel factorial design of experiments. Results show that all the impurities degrade the performance, with CO being the most degrading agent and CO 2 the least. The factorial analysis shows that there is interdependence among the effects of the different factors considered. This interdependence suggests, for example, that tolerances to concentrations of CO above 2% may be compromised by the presence in the anode feed of CO 2 . Methanol has a poisoning effect on the fuel cell at all the tested feed ratios, and the performance drop is found to be proportional to the amount of methanol in feed gas. The effects are more pronounced when other impurities are also present in the feed gas, especially at higher methanol concentrations.

Suggested Citation

  • Samuel Simon Araya & Søren Juhl Andreasen & Søren Knudsen Kær, 2012. "Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell," Energies, MDPI, vol. 5(11), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4251-4267:d:20948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/11/4251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/11/4251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ouzounidou, Martha & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2009. "A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies," Energy, Elsevier, vol. 34(10), pages 1733-1743.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najafi, Behzad & Haghighat Mamaghani, Alireza & Rinaldi, Fabio & Casalegno, Andrea, 2015. "Long-term performance analysis of an HT-PEM fuel cell based micro-CHP system: Operational strategies," Applied Energy, Elsevier, vol. 147(C), pages 582-592.
    2. Thomas, Sobi & Vang, Jakob Rabjerg & Araya, Samuel Simon & Kær, Søren Knudsen, 2017. "Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions," Applied Energy, Elsevier, vol. 192(C), pages 422-436.
    3. Hyun Sung Kang & Yoon Hyuk Shin, 2019. "Analytical Study of Tri-Generation System Integrated with Thermal Management Using HT-PEMFC Stack," Energies, MDPI, vol. 12(16), pages 1-17, August.
    4. Ribeirinha, P. & Abdollahzadeh, M. & Boaventura, M. & Mendes, A., 2017. "H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 409-419.
    5. Giovanni Cinti & Vincenzo Liso & Simon Lennart Sahlin & Samuel Simon Araya, 2020. "System Design and Modeling of a High Temperature PEM Fuel Cell Operated with Ammonia as a Fuel," Energies, MDPI, vol. 13(18), pages 1-17, September.
    6. Kefeng Hu & Daijun Yang, 2021. "Studies on the Effects of NH 3 in H 2 and Air on the Performance of PEMFC," Energies, MDPI, vol. 14(20), pages 1-12, October.
    7. Geonhui Gwak & Minwoo Kim & Dohwan Kim & Muhammad Faizan & Kyeongmin Oh & Jaeseung Lee & Jaeyoo Choi & Nammin Lee & Kisung Lim & Hyunchul Ju, 2019. "Performance and Efficiency Analysis of an HT-PEMFC System with an Absorption Chiller for Tri-Generation Applications," Energies, MDPI, vol. 12(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    2. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    3. Lee, Chun-Boo & Cho, Sung-Ho & Lee, Dong-Wook & Hwang, Kyung-Ran & Park, Jong-Soo & Kim, Sung-Hyun, 2014. "Combination of preferential CO oxidation and methanation in hybrid MCR (micro-channel reactor) for CO clean-up," Energy, Elsevier, vol. 78(C), pages 421-425.
    4. Salemme, Lucia & Menna, Laura & Simeone, Marino, 2013. "Calculation of the energy efficiency of fuel processor – PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value," Energy, Elsevier, vol. 57(C), pages 368-374.
    5. Zhang, Xiuqin & Guo, Juncheng & Chen, Jincan, 2010. "The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching," Energy, Elsevier, vol. 35(12), pages 5294-5299.
    6. Wang, Feng & Cao, Yiding & Wang, Guoqiang, 2015. "Thermoelectric generation coupling methanol steam reforming characteristic in microreactor," Energy, Elsevier, vol. 80(C), pages 642-653.
    7. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2015. "Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system," Energy, Elsevier, vol. 80(C), pages 331-339.
    8. Khadijeh Hooshyari & Bahman Amini Horri & Hamid Abdoli & Mohsen Fallah Vostakola & Parvaneh Kakavand & Parisa Salarizadeh, 2021. "A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells," Energies, MDPI, vol. 14(17), pages 1-38, September.
    9. Lee, Jun Sung & Han, Gi Bo & Kang, Misook, 2012. "Low temperature steam reforming of ethanol for carbon monoxide-free hydrogen production over mesoporous Sn-incorporated SBA-15 catalysts," Energy, Elsevier, vol. 44(1), pages 248-256.
    10. Lesmana, Donny & Wu, Ho-Shing, 2014. "Modified oxalic acid co-precipitation method for preparing Cu/ZnO/Al2O3/Cr2O3/CeO2 catalysts for the OR (oxidative reforming) of M (methanol) to produce H2 (hydrogen) gas," Energy, Elsevier, vol. 69(C), pages 769-777.
    11. Zhang, Tie-qing & Malik, Fawad Rahim & Jung, Seunghun & Kim, Young-Bae, 2022. "Hydrogen production and temperature control for DME autothermal reforming process," Energy, Elsevier, vol. 239(PA).
    12. Yao, Ling & Wang, Feng & Wang, Long & Wang, Guoqiang, 2019. "Transport enhancement study on small-scale methanol steam reforming reactor with waste heat recovery for hydrogen production," Energy, Elsevier, vol. 175(C), pages 986-997.
    13. Tie-Qing Zhang & Seunghun Jung & Young-Bae Kim, 2022. "Hydrogen Production System through Dimethyl Ether Autothermal Reforming, Based on Model Predictive Control," Energies, MDPI, vol. 15(23), pages 1-16, November.
    14. Inbamrung, Piyanut & Sornchamni, Thana & Prapainainar, Chaiwat & Tungkamani, Sabaithip & Narataruksa, Phavanee & Jovanovic, Goran N., 2018. "Modeling of a square channel monolith reactor for methane steam reforming," Energy, Elsevier, vol. 152(C), pages 383-400.
    15. Iulianelli, A. & Ribeirinha, P. & Mendes, A. & Basile, A., 2014. "Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 355-368.
    16. Ipsakis, Dimitris & Ouzounidou, Martha & Papadopoulou, Simira & Seferlis, Panos & Voutetakis, Spyros, 2017. "Dynamic modeling and control analysis of a methanol autothermal reforming and PEM fuel cell power system," Applied Energy, Elsevier, vol. 208(C), pages 703-718.
    17. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2014. "Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems," Energy, Elsevier, vol. 68(C), pages 989-997.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4251-4267:d:20948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.