IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp769-777.html
   My bibliography  Save this article

Modified oxalic acid co-precipitation method for preparing Cu/ZnO/Al2O3/Cr2O3/CeO2 catalysts for the OR (oxidative reforming) of M (methanol) to produce H2 (hydrogen) gas

Author

Listed:
  • Lesmana, Donny
  • Wu, Ho-Shing

Abstract

OR (oxidative reforming) of M (methanol) was performed using Cu/ZnO/Al2O3-based catalysts, prepared using an oxalic co-precipitation method. We optimized the active catalyst formulation for low reaction temperatures and investigated the effects of varying the steam–methanol mole ratio, the oxygen–methanol mole ratio, WHSV (weight hourly space velocity), precursor mix formulation, reaction temperature, and precipitation temperature, pH, and DTs (drying times) of oxalic acid co-precipitated precursors. The Cu/ZnO/Al2O3/Cr2O3/CeO2 (15/15/2.5/1.25/1.25) catalyst provided greater than 80% conversion to methanol at 200 °C under CO (carbon monoxide) at 900 ppm, and provided a 100-h lifetime.

Suggested Citation

  • Lesmana, Donny & Wu, Ho-Shing, 2014. "Modified oxalic acid co-precipitation method for preparing Cu/ZnO/Al2O3/Cr2O3/CeO2 catalysts for the OR (oxidative reforming) of M (methanol) to produce H2 (hydrogen) gas," Energy, Elsevier, vol. 69(C), pages 769-777.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:769-777
    DOI: 10.1016/j.energy.2014.03.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214003375
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salemme, Lucia & Menna, Laura & Simeone, Marino, 2013. "Calculation of the energy efficiency of fuel processor – PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value," Energy, Elsevier, vol. 57(C), pages 368-374.
    2. Ouzounidou, Martha & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2009. "A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies," Energy, Elsevier, vol. 34(10), pages 1733-1743.
    3. Hong, Sung Kook & Dong, Sang Keun & Han, Jeong Ok & Lee, Joong Seong & Lee, Young Chul, 2013. "Numerical study of effect of operating and design parameters for design of steam reforming reactor," Energy, Elsevier, vol. 61(C), pages 410-418.
    4. Wang, Guoqiang & Wang, Feng & Li, Longjian & Zhang, Guofu, 2013. "Experiment of catalyst activity distribution effect on methanol steam reforming performance in the packed bed plate-type reactor," Energy, Elsevier, vol. 51(C), pages 267-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inbamrung, Piyanut & Sornchamni, Thana & Prapainainar, Chaiwat & Tungkamani, Sabaithip & Narataruksa, Phavanee & Jovanovic, Goran N., 2018. "Modeling of a square channel monolith reactor for methane steam reforming," Energy, Elsevier, vol. 152(C), pages 383-400.
    2. Perng, Shiang-Wuu & Chien, Tsai-Chieh & Horng, Rong-Fang & Wu, Horng-Wen, 2019. "Performance enhancement of a plate methanol steam reformer by ribs installed in the reformer channel," Energy, Elsevier, vol. 167(C), pages 588-601.
    3. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2015. "Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system," Energy, Elsevier, vol. 80(C), pages 331-339.
    4. Lee, Chun-Boo & Cho, Sung-Ho & Lee, Dong-Wook & Hwang, Kyung-Ran & Park, Jong-Soo & Kim, Sung-Hyun, 2014. "Combination of preferential CO oxidation and methanation in hybrid MCR (micro-channel reactor) for CO clean-up," Energy, Elsevier, vol. 78(C), pages 421-425.
    5. Wang, Feng & Cao, Yiding & Wang, Guoqiang, 2015. "Thermoelectric generation coupling methanol steam reforming characteristic in microreactor," Energy, Elsevier, vol. 80(C), pages 642-653.
    6. Yao, Ling & Wang, Feng & Wang, Long & Wang, Guoqiang, 2019. "Transport enhancement study on small-scale methanol steam reforming reactor with waste heat recovery for hydrogen production," Energy, Elsevier, vol. 175(C), pages 986-997.
    7. Ouyang, Kwan & Wu, Horng-Wen & Huang, Shun-Chieh & Wu, Sheng-Ju, 2017. "Optimum parameter design for performance of methanol steam reformer combining Taguchi method with artificial neural network and genetic algorithm," Energy, Elsevier, vol. 138(C), pages 446-458.
    8. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    9. Salemme, Lucia & Menna, Laura & Simeone, Marino, 2013. "Calculation of the energy efficiency of fuel processor – PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value," Energy, Elsevier, vol. 57(C), pages 368-374.
    10. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    11. Zhang, Xiuqin & Guo, Juncheng & Chen, Jincan, 2010. "The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching," Energy, Elsevier, vol. 35(12), pages 5294-5299.
    12. Tafaoli-Masoule, M. & Bahrami, A. & Elsayed, E.M., 2014. "Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm," Energy, Elsevier, vol. 70(C), pages 643-652.
    13. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    14. Popov, S.K. & Svistunov, I.N. & Garyaev, A.B. & Serikov, E.A. & Temyrkanova, E.K., 2017. "The use of thermochemical recuperation in an industrial plant," Energy, Elsevier, vol. 127(C), pages 44-51.
    15. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    16. Wu, Wei & Yang, Hsiao-Tung & Hwang, Jenn-Jiang, 2014. "Conceptual design of syngas production systems with almost net-zero carbon dioxide emissions," Energy, Elsevier, vol. 74(C), pages 753-761.
    17. Khadijeh Hooshyari & Bahman Amini Horri & Hamid Abdoli & Mohsen Fallah Vostakola & Parvaneh Kakavand & Parisa Salarizadeh, 2021. "A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells," Energies, MDPI, vol. 14(17), pages 1-38, September.
    18. Li, Lin & Tang, Dawei & Song, Yongchen & Jiang, Bo & Zhang, Qian, 2018. "Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts," Energy, Elsevier, vol. 149(C), pages 937-943.
    19. Alan Cruz Rojas & Guadalupe Lopez Lopez & J. F. Gomez-Aguilar & Victor M. Alvarado & Cinda Luz Sandoval Torres, 2017. "Control of the Air Supply Subsystem in a PEMFC with Balance of Plant Simulation," Sustainability, MDPI, vol. 9(1), pages 1-23, January.
    20. Iulianelli, A. & Ribeirinha, P. & Mendes, A. & Basile, A., 2014. "Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 355-368.

    More about this item

    Keywords

    Oxidative; Reforming; M (methanol); H2 (hydrogen); Catalyst; Oxalic co-precipitation;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:769-777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.