IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1237-d1604556.html
   My bibliography  Save this article

The Dynamic Process of CO 2 Leakage Along Wellbores Under Different Sequestration Conditions

Author

Listed:
  • Baolei Zhu

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China)

  • Tianfu Xu

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China)

  • Xi Zhang

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Chenglong Zhang

    (Center for Hydrogeology and Environmental Geology Survey, China Geological Survey (CHEGS), Tianjin 300309, China)

  • Guanhong Feng

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China)

Abstract

Abandoned production and monitoring wells in depleted oil and gas fields can readily serve as primary leakage pathways for stored CO 2 . The temperature, pressure conditions around the wellbore bottom, and CO 2 concentration influence the phase behavior of CO 2 during leakage. This study establishes a 3D wellbore–reservoir coupled model using CO 2 injection data from 1 December 2009, in the DAS area, eastern Cranfield oilfield, Mississippi, USA, to analyze the dynamic evolution of CO 2 leakage along wellbores. Simulations are conducted using the collaboration of ECO2M and ECO2N v2.0 modules. The study examines leakage regimes under varying distances from the injection well and different reservoir temperatures. The results indicate that CO 2 phase changes occur primarily in wells near the injection point or under high-pressure and high CO 2 saturation conditions, usually with a short leakage period due to ice formation at the wellhead. In areas with low CO 2 saturation, prolonged leakage periods lead to significant pressure drops at the bottom, as well as the temperature as a result of the Joule–Thomson effect. Lower reservoir temperatures facilitate smoother and more gradual leakage. These findings provide a theoretical foundation for ensuring the safe implementation of CCUS projects and offer insights into the mechanical explanation of CO 2 geyser phenomena.

Suggested Citation

  • Baolei Zhu & Tianfu Xu & Xi Zhang & Chenglong Zhang & Guanhong Feng, 2025. "The Dynamic Process of CO 2 Leakage Along Wellbores Under Different Sequestration Conditions," Energies, MDPI, vol. 18(5), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1237-:d:1604556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1237/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1237/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanling Zhang & Sheng Jiang & Hongda Li & Peiran Li & Xiuping Zhong & Chen Chen & Guigang Tu & Xiang Liu & Zhenhua Xu, 2025. "Current Status and Reflections on Ocean CO 2 Sequestration: A Review," Energies, MDPI, vol. 18(4), pages 1-28, February.
    2. Nassabeh, Mehdi & You, Zhenjiang & Keshavarz, Alireza & Iglauer, Stefan, 2024. "Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection," Energy, Elsevier, vol. 305(C).
    3. Zhao, Guojun & Zheng, Jia-nan & Gong, Guangjun & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2023. "Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage," Applied Energy, Elsevier, vol. 351(C).
    4. Barbara Uliasz-Misiak & Jacek Misiak, 2024. "Underground Gas Storage in Saline Aquifers: Geological Aspects," Energies, MDPI, vol. 17(7), pages 1-23, March.
    5. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    7. Weizheng Bai & Jun Lu & Jian Wang & Xinghui Fu & Yaping Fu & Yashuai Huang & Xiao Wang & Xilin Shi, 2024. "Numerical Simulation Study of Salt Cavern CO 2 Storage in Power-to-Gas System," Energies, MDPI, vol. 17(22), pages 1-19, November.
    8. Tan, Yongsheng & Li, Qi & Chen, Bowen & Xu, Liang & Yu, Tao & Cao, Xiaomin, 2024. "Experimental investigation of SiO2 nanoparticle–assisted CO2 flooding in carbonate saline aquifers," Energy, Elsevier, vol. 305(C).
    9. Xitong Hu & Rupom Bhattacherjee & Kodjo Botchway & Jack C. Pashin & Goutam Chakraborty & Prem Bikkina, 2024. "CO 2 Storage Site Analysis, Screening, and Resource Estimation for Cenozoic Offshore Reservoirs in the Central Gulf of Mexico," Energies, MDPI, vol. 17(6), pages 1-23, March.
    10. Fu, Yue & Huang, Yan & Xin, Haozhe & Liu, Ming & Wang, Liyuan & Yan, Junjie, 2024. "The pressure sliding operation strategy of the carbon capture system integrated within a coal-fired power plant: Influence factors and energy saving potentials," Energy, Elsevier, vol. 307(C).
    11. Ge, Yang & Wang, Lei & Song, Yongchen, 2024. "Large-scale experimental study on marine hydrate-based CO2 sequestration," Energy, Elsevier, vol. 312(C).
    12. Wang, Chao & Liu, Bo & Mohammadi, Mohammad-Reza & Fu, Li & Fattahi, Elham & Motra, Hem Bahadur & Hazra, Bodhisatwa & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2024. "Integrating experimental study and intelligent modeling of pore evolution in the Bakken during simulated thermal progression for CO2 storage goals," Applied Energy, Elsevier, vol. 359(C).
    13. Alessia Di Giuseppe & Alberto Maria Gambelli, 2024. "CO 2 Storage in Deep Oceanic Sediments in the form of Hydrates: Energy Evaluation and Advantages Related to the Use of N 2 -Containing Mixtures," Energies, MDPI, vol. 17(16), pages 1-17, August.
    14. Wang, Youshi & Wang, Hanpeng & Sun, Dekang & Lin, Chunjin & Yu, Xinping & Hou, Fubin & Bai, Zihan, 2024. "Permeability evolution of deep-buried coal based on NMR analysis: CO2 adsorption and water content effects," Energy, Elsevier, vol. 289(C).
    15. Wu, Lin & Hou, Zhengmeng & Luo, Zhifeng & Fang, Yanli & Mao, Jinhua & Qin, Nan & Guo, Yilin & Zhang, Tian & Cai, Nan, 2024. "Site selection for underground bio-methanation of hydrogen and carbon dioxide using an integrated multi-criteria decision-making (MCDM) approach," Energy, Elsevier, vol. 306(C).
    16. Salas, D.A. & Boero, A.J. & Ramirez, A.D., 2024. "Life cycle assessment of bioenergy with carbon capture and storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Shuo Yang & Hailong Tian, 2024. "Evolution of the Caprock Sealing Capacity Induced by CO 2 Intrusion: A Simulation of the Dezhou Dongying Formation," Energies, MDPI, vol. 17(21), pages 1-22, October.
    18. Jemal Worku Fentaw & Hossein Emadi & Athar Hussain & Diana Maury Fernandez & Sugan Raj Thiyagarajan, 2024. "Geochemistry in Geological CO 2 Sequestration: A Comprehensive Review," Energies, MDPI, vol. 17(19), pages 1-35, October.
    19. Mingying Xie & Shenghao Wang & Shasha Feng & Chao Xu & Xisheng Li & Xiaona Sun & Yueqiang Ma & Quan Gan & Tao Wang, 2025. "A Stability Assessment of Fault-Caprock Trapping Systems for CO 2 Storage in Saline Aquifer Layers Using a Coupled THMC Model," Energies, MDPI, vol. 18(4), pages 1-28, February.
    20. Xiongwei Sun & Hongya Wang & Bin Gong & Heng Zhao & Haoqiang Wu & Nan Wu & Wei Sun & Shizhao Zhang & Ke Jiang, 2024. "Investigation into Enhancing Methane Recovery and Sequestration Mechanism in Deep Coal Seams by CO 2 Injection," Energies, MDPI, vol. 17(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1237-:d:1604556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.