IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5462-d1511740.html
   My bibliography  Save this article

Evolution of the Caprock Sealing Capacity Induced by CO 2 Intrusion: A Simulation of the Dezhou Dongying Formation

Author

Listed:
  • Shuo Yang

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
    Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China)

  • Hailong Tian

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
    Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China)

Abstract

CO 2 –water–rock interactions have an important impact on the stability and integrity of the caprock in CO 2 geological storage projects. The injected CO 2 in the reservoir enters the caprock via different mechanisms, leading to either the dissolution or precipitation of minerals. The mineral alterations change the porosity, permeability, and mechanical properties of the caprock, affecting its sealing capability. To evaluate the sealing effectiveness of overlying caprock and identify the influencing factors, numerical simulations and experiments were carried out on the mudstone Dongying Formation in Dezhou, China. Based on high-temperature and high-pressure autoclave experiments, batch reaction simulations were performed to obtain some key kinetic parameters for mineral dissolution/precipitation. Then, they were applied to the following simulation. The simulation results indicate that gaseous CO 2 has migrated 7 m in the caprock, while dissolved CO 2 migrated to the top of the caprock. Calcite is the dominant mineral within 1 m of the bottom of the caprock. The dissolution of calcite increases the porosity from 0.0625 to 0.4, but the overall porosity of the caprock decreases, with a minimum of 0.054, mainly due to the precipitation of montmorillonite and K-feldspar. A sensitivity analysis of the factors affecting the sealing performance of the caprock considered the changes in sealing performance under different reservoir sealing conditions. Sensitivity analysis of the factors affecting the sealing performance of the caprock indicates that the difference in pressure between reservoir and caprock affects the range of CO 2 transport and the degree of mineral reaction, and the sealing of the caprock increases with the difference in pressure. Increasing the initial reservoir gas saturation can weaken the caprock’s self-sealing behavior but shorten the migration distance of CO 2 within the caprock. When the content is lower than 2%, the presence of chlorite improves the sealing performance of the caprock and does not increase with further chlorite content. This study elucidates the factors that affect the sealing ability of the caprock, providing a theoretical basis for the selection and safety evaluation of CO 2 geological storage sites.

Suggested Citation

  • Shuo Yang & Hailong Tian, 2024. "Evolution of the Caprock Sealing Capacity Induced by CO 2 Intrusion: A Simulation of the Dezhou Dongying Formation," Energies, MDPI, vol. 17(21), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5462-:d:1511740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holloway, S., 2005. "Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option," Energy, Elsevier, vol. 30(11), pages 2318-2333.
    2. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emad A. Al‐Khdheeawi & Stephanie Vialle & Ahmed Barifcani & Mohammad Sarmadivaleh & Stefan Iglauer, 2017. "Influence of CO 2 ‐wettability on CO 2 migration and trapping capacity in deep saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 328-338, April.
    2. Valentina Bosetti & Laurent Gilotte, 2005. "Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?," Working Papers 2005.86, Fondazione Eni Enrico Mattei.
    3. Anita Punia, 2021. "Carbon dioxide sequestration by mines: implications for climate change," Climatic Change, Springer, vol. 165(1), pages 1-17, March.
    4. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
    5. Piotr Słomski & Maria Mastalerz & Jacek Szczepański & Arkadiusz Derkowski & Tomasz Topór & Marcin Lutyński, 2020. "Experimental and numerical investigation of CO2–brine–rock interactions in the early Palaeozoic mudstones from the Polish part of the Baltic Basin at simulatedin situ conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 567-590, June.
    6. Labus, Krzysztof & Bujok, Petr, 2011. "CO2 mineral sequestration mechanisms and capacity of saline aquifers of the Upper Silesian Coal Basin (Central Europe) - Modeling and experimental verification," Energy, Elsevier, vol. 36(8), pages 4974-4982.
    7. Nassabeh, Mehdi & You, Zhenjiang & Keshavarz, Alireza & Iglauer, Stefan, 2024. "Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection," Energy, Elsevier, vol. 305(C).
    8. Alshammari, Yousef M. & Sarathy, S. Mani, 2017. "Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices," Energy Policy, Elsevier, vol. 101(C), pages 502-511.
    9. Zhao, Guojun & Zheng, Jia-nan & Gong, Guangjun & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2023. "Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage," Applied Energy, Elsevier, vol. 351(C).
    10. Barbara Uliasz-Misiak & Jacek Misiak, 2024. "Underground Gas Storage in Saline Aquifers: Geological Aspects," Energies, MDPI, vol. 17(7), pages 1-23, March.
    11. Procesi, M. & Cantucci, B. & Buttinelli, M. & Armezzani, G. & Quattrocchi, F. & Boschi, E., 2013. "Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy)," Applied Energy, Elsevier, vol. 110(C), pages 104-131.
    12. Beining Zhang & Weiguo Liang & Pathegama Gamage Ranjith & Wei He & Zhigang Li & Xiaogang Zhang, 2018. "Effects of Coal Deformation on Different-Phase CO 2 Permeability in Sub-Bituminous Coal: An Experimental Investigation," Energies, MDPI, vol. 11(11), pages 1-25, October.
    13. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Chang, Ailian & Sun, HongGuang & Zheng, Chunmiao & Lu, Bingqing & Lu, Chengpeng & Ma, Rui & Zhang, Yong, 2018. "A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 356-369.
    15. Zhang, Xiaogang & Ranjith, P.G. & Ranathunga, A.S., 2019. "Sub- and super-critical carbon dioxide flow variations in large high-rank coal specimen: An experimental study," Energy, Elsevier, vol. 181(C), pages 148-161.
    16. Dang, Zheng & Wang, Xiaoming & Bie, Shizhen & Su, Xianbo & Hou, Shihui, 2024. "Experimental study of water occurrence in coal under different negative pressure conditions: Implication for CBM productivity during negative pressure drainage," Energy, Elsevier, vol. 303(C).
    17. Matovic, Darko, 2011. "Biochar as a viable carbon sequestration option: Global and Canadian perspective," Energy, Elsevier, vol. 36(4), pages 2011-2016.
    18. Perera, M.S.A. & Ranjith, P.G. & Choi, S.K. & Airey, D., 2011. "The effects of sub-critical and super-critical carbon dioxide adsorption-induced coal matrix swelling on the permeability of naturally fractured black coal," Energy, Elsevier, vol. 36(11), pages 6442-6450.
    19. Buttinelli, M. & Procesi, M. & Cantucci, B. & Quattrocchi, F. & Boschi, E., 2011. "The geo-database of caprock quality and deep saline aquifers distribution for geological storage of CO2 in Italy," Energy, Elsevier, vol. 36(5), pages 2968-2983.
    20. Singh, A.K. & Goerke, U.-J. & Kolditz, O., 2011. "Numerical simulation of non-isothermal compositional gas flow: Application to carbon dioxide injection into gas reservoirs," Energy, Elsevier, vol. 36(5), pages 3446-3458.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5462-:d:1511740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.