IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224034273.html
   My bibliography  Save this article

Large-scale experimental study on marine hydrate-based CO2 sequestration

Author

Listed:
  • Ge, Yang
  • Wang, Lei
  • Song, Yongchen

Abstract

In recent years, the global climate issues caused by CO2 have become increasingly severe, triggering a series of technological reforms aimed at decarbonization. Among these, the marine hydrate-based CO2 sequestration (HBCS) technology has shown great potential. However, the current research on HBCS mainly relies on small-scale experimental studies, and the corresponding conclusions lack practical applications. Therefore, this paper independently developed a large-scale HBCS experimental system with a 1700 L high-pressure reactor, which has a total of 80 temperature measurement points and 80 pressure measurement points, as well as 9 horizontal wells and 9 vertical wells. This paper utilizes this system to conduct HBCS research on water-saturated and coarse-grained quartz sand at 11 MPa pore pressure through vertical and horizontal wells. The experimental results indicate that under conditions of low temperature (7 oC), high flow rate (20 mL/min), and horizontal well, the water to CO2 hydrate conversion (39.83 %), total amount of CO2 sequestration (14296.64 L/STP) and HBCS (12790.48 L/STP) are the highest, corresponding to the minimum reservoir space for sequestering one million tons of CO2. Furthermore, the influence area for HBCS in vertical well is approximately 9000 times the cross-sectional area of the well. This research can provide theoretical references for marine HBCS.

Suggested Citation

  • Ge, Yang & Wang, Lei & Song, Yongchen, 2024. "Large-scale experimental study on marine hydrate-based CO2 sequestration," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034273
    DOI: 10.1016/j.energy.2024.133649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133649?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.