IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020498.html
   My bibliography  Save this article

Experimental investigation of SiO2 nanoparticle–assisted CO2 flooding in carbonate saline aquifers

Author

Listed:
  • Tan, Yongsheng
  • Li, Qi
  • Chen, Bowen
  • Xu, Liang
  • Yu, Tao
  • Cao, Xiaomin

Abstract

CO2 flooding is an important process for controlling plume migration and initial pore space utilization. However, the characteristics of nanoparticle–assisted CO2 flooding in carbonate saline aquifers are poorly understood. In this study, experiments were conducted on the effect of SiO2 nanoparticles (SNPs) on the characteristics of CO2 flooding in carbonate saline aquifers. Six experiments have been conducted on CO2 flooding, three on the influence of the injection rate, three on the influence of nanoparticles, and one on the T2 spectrum and core porosity. The results show that (1) the brine recovery efficiency of CO2 flooding and SNPs–assisted CO2 flooding decreases with increasing rate. SNPs can improve the water recovery efficiency of CO2 flooding; for this study, the injection rate decreased from 2.5 mL/min to 0.5 mL/min, and the increase in SNPs–assisted CO2 flooding increased from 13.04 % to 26.12 %. (2) The brine recovery efficiency of CO2 flooding and SNPs–assisted CO2 flooding also decreases correspondingly with increasing injection rate. (3) The change in porosity is greater after CO2 flooding than after SNPs–assisted CO2 flooding, although the change gradually decreases with increasing injection rate. (4) As the injection rate increases, the injection and production pressure differences increase. Injection–production pressure differences are lower for SNPs–assisted CO2 flooding than for CO2 flooding. This work provides a safe and efficient CO2 storage technology for carbonate saline aquifers.

Suggested Citation

  • Tan, Yongsheng & Li, Qi & Chen, Bowen & Xu, Liang & Yu, Tao & Cao, Xiaomin, 2024. "Experimental investigation of SiO2 nanoparticle–assisted CO2 flooding in carbonate saline aquifers," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020498
    DOI: 10.1016/j.energy.2024.132275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Tong & Tang, Ming & Ma, Yankun & Zhu, Guangpei & Zhang, Qinghe & Wu, Jun & Xie, Zhizheng, 2022. "Experimental study on CO2/Water flooding mechanism and oil recovery in ultralow - Permeability sandstone with online LF-NMR," Energy, Elsevier, vol. 252(C).
    2. Wang, Heng & Kou, Zuhao & Ji, Zemin & Wang, Shouchuan & Li, Yunfei & Jiao, Zunsheng & Johnson, Matthew & McLaughlin, J. Fred, 2023. "Investigation of enhanced CO2 storage in deep saline aquifers by WAG and brine extraction in the Minnelusa sandstone, Wyoming," Energy, Elsevier, vol. 265(C).
    3. Jeong, Gu Sun & Lee, Jaehyoung & Ki, Seil & Huh, Dae-Gee & Park, Chan-Hee, 2017. "Effects of viscosity ratio, interfacial tension and flow rate on hysteric relative permeability of CO2/brine systems," Energy, Elsevier, vol. 133(C), pages 62-69.
    4. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yu & Yang, Zijiang & Peng, Junlan & Zhou, Mengmeng & Song, Xianzhi & Cui, Qiliang & Fan, Meng, 2024. "CO2 storage characteristics and migration patterns under different abandoned oil and gas well types," Energy, Elsevier, vol. 292(C).
    2. Zhao, Guojun & Zheng, Jia-nan & Gong, Guangjun & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2023. "Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage," Applied Energy, Elsevier, vol. 351(C).
    3. Lekun Zhao & Guoqiang Sang & Jialei Ding & Jiangfei Sun & Tongjing Liu & Yuedong Yao, 2023. "Research on the Timing of WAG Intervention in Low Permeability Reservoir CO 2 Flooding Process to Improve CO 2 Performance and Enhance Recovery," Energies, MDPI, vol. 16(21), pages 1-24, October.
    4. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    5. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Wei, Jianguang & Zhang, Dong & Zhang, Xin & Zhao, Xiaoqing & Zhou, Runnan, 2023. "Experimental study on water flooding mechanism in low permeability oil reservoirs based on nuclear magnetic resonance technology," Energy, Elsevier, vol. 278(PB).
    7. Meiheriayi Mutailipu & Qingnan Xue & Tao Li & Yande Yang & Fusheng Xue, 2023. "Thermodynamic Properties of a Gas–Liquid–Solid System during the CO 2 Geological Storage and Utilization Process: A Review," Energies, MDPI, vol. 16(21), pages 1-30, October.
    8. Zhou, Guangzhao & Duan, Xianggang & Chang, Jin & Bo, Yu & Huang, Yuhan, 2023. "Investigation of CH4/CO2 competitive adsorption-desorption mechanisms for enhanced shale gas production and carbon sequestration using nuclear magnetic resonance," Energy, Elsevier, vol. 278(PB).
    9. Fu, Yue & Huang, Yan & Xin, Haozhe & Liu, Ming & Wang, Liyuan & Yan, Junjie, 2024. "The pressure sliding operation strategy of the carbon capture system integrated within a coal-fired power plant: Influence factors and energy saving potentials," Energy, Elsevier, vol. 307(C).
    10. Mohammad Hossein Golestan & Carl Fredrik Berg, 2024. "Simulations of CO 2 Dissolution in Porous Media Using the Volume-of-Fluid Method," Energies, MDPI, vol. 17(3), pages 1-21, January.
    11. Ebrahim Fathi & Danilo Arcentales & Fatemeh Belyadi, 2023. "Impacts of Different Operation Conditions and Geological Formation Characteristics on CO 2 Sequestration in Citronelle Dome, Alabama," Energies, MDPI, vol. 16(7), pages 1-20, April.
    12. Alessia Di Giuseppe & Alberto Maria Gambelli, 2024. "CO 2 Storage in Deep Oceanic Sediments in the form of Hydrates: Energy Evaluation and Advantages Related to the Use of N 2 -Containing Mixtures," Energies, MDPI, vol. 17(16), pages 1-17, August.
    13. Wang, Youshi & Wang, Hanpeng & Sun, Dekang & Lin, Chunjin & Yu, Xinping & Hou, Fubin & Bai, Zihan, 2024. "Permeability evolution of deep-buried coal based on NMR analysis: CO2 adsorption and water content effects," Energy, Elsevier, vol. 289(C).
    14. Wu, Lin & Hou, Zhengmeng & Luo, Zhifeng & Fang, Yanli & Mao, Jinhua & Qin, Nan & Guo, Yilin & Zhang, Tian & Cai, Nan, 2024. "Site selection for underground bio-methanation of hydrogen and carbon dioxide using an integrated multi-criteria decision-making (MCDM) approach," Energy, Elsevier, vol. 306(C).
    15. Tian, Weibing & Wu, Keliu & Chen, Zhangxin & Gao, Yanling & Li, Jing & Wang, Muyuan, 2022. "A relative permeability model considering nanoconfinement and dynamic contact angle effects for tight reservoirs," Energy, Elsevier, vol. 258(C).
    16. Zhang, Shuo & Zhang, Xiaodong & Wang, Zhiming & Liu, Xiao & Heng, Shuai & Li, Yong & Sun, Zeyuan, 2023. "Molecular simulation of CH4 and CO2 adsorption behavior in coal physicochemical structure model and its control mechanism," Energy, Elsevier, vol. 285(C).
    17. Wei, Bo & He, Xiaobiao & Li, Xin & Ju, Yiwen & Jin, Jun & Luo, Qiang, 2023. "Residual oil contents of dolomicrite and sandy dolomite tight oil reservoirs after CO2 huff and puff: An experimental study," Energy, Elsevier, vol. 275(C).
    18. Lewandowska - Śmierzchalska, Joanna & Uliasz - Misiak, Barbara, 2024. "Assessment of potential sites for simultaneous exploitation of geothermal energy and CO2 storage in aquifers: Multi-criteria approach," Renewable Energy, Elsevier, vol. 226(C).
    19. Lao, Junming & Xie, Zhenhuan & Du, Shuyi & Zhou, Yiyang & Song, Hongqing, 2024. "Reducing energy consumption and enhancing trapping and capacity of CO2 sequestration: The effects of pore heterogeneity and fluid properties," Energy, Elsevier, vol. 304(C).
    20. Kévin Nadarajah & Laurent Brun & Stéphanie Bordel & Emeline Ah-Tchine & Anissa Dumesnil & Antoine Marques Mourato & Jacques Py & Laurent Jammes & Xavier Arnauld De Sartre & Alain Somat, 2024. "A Three-Stage Psychosocial Engineering-Based Method to Support Controversy and Promote Mutual Understanding between Stakeholders: The Case of CO 2 Geological Storage," Energies, MDPI, vol. 17(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.